Tiny bubble study could improve dentists’ tools

People’s teeth-chattering experiences in the dentist’s chair could be improved by fresh insights into how tiny, powerful bubbles are formed by ultra-fast vibrations, a study suggests.

Image of a dental procedure

The physics of how so-called nanobubbles are generated could have a range of clinical and industrial applications, including in dental hygiene devices used to remove plaque, experts say.

Their findings could also inform the development of other technologies – such as devices to selectively target tumour cells – that harness the energy released when the bubbles burst.

Bubble formation

Edinburgh engineers ran complex supercomputer simulations to better understand the underlying mechanisms behind the formation of nanobubbles – which are tens of thousands of times smaller than a pinhead.

The team modelled the movement of individual molecules in a thin layer of water on a surface vibrating a million times faster than the flapping of a hummingbird’s wings.

Complex simulations

Their analysis revealed that nanobubbles can form either when vibrations cause the water to boil, or when the water pressure drops to a point where liquid becomes vapour – a process called cavitation.

Researchers ran their calculations using the ARCHER UK National Supercomputing Service, which is operated by EPCC, the University’s high-performance computing facility.

The study, published in the journal Nano Letters, is available here:

We now have a better understanding of how vibrations at the smallest scale can be exploited to produce nanobubbles. This work has a broad scope for future research and will help researchers devise new experiments to shed further light on the generation of nanobubbles.

Saikat DattaSchool of Engineering

The study was supported by the Engineering and Physical Sciences Research Council.

Related links

Journal paper

School of Engineering

Image credit: skynesher via Getty Images