Study abroad in Edinburgh

Course finder

<< return to browsing

Semester 1

Mechanisms of Brain Development 3 (BIME09005)

Subject

Biomedical Sciences

College

MVM

Credits

20

Normal Year Taken

3

Delivery Session Year

2023/2024

Pre-requisites

Course Summary

Mechanisms of Development of the Nervous System from neural tube formation to adulthood. Genetic regulation of neuronal differentiation: cell proliferation, cell death, cell migration, neurite extension, synaptogenesis. Activity-dependent regulation of gene expression, neural anatomy, physiology and behaviour. Conservation of mechanisms from invertebrates to mammals: techniques employed for studying neural development.

Course Description

Mechanisms of Brain Development 3 is a Junior Honours course designed to prepare you for Honours courses in Anatomy and Development, and Physiology, as well as allied courses such as Biomedical Sciences, Neuroscience, Pharmacology. This course will investigate the mechanisms by which the nervous system develops from neural tube formation in early embryogenesis to adulthood. It will examine the genetic regulation of neuronal differentiation including cell proliferation, cell death, cell migration, neurite extension and synaptogenesis. More specifically, it will examine the role of transcription factors and signalling molecules in regulating the formation of the brain areas and cellular identity. We will examine the regulatory mechanisms by which axon tracts and dendrites form including genetic control of axon extension and later activity-dependent processes of target selection. Finally, we will investigate the activity-dependent regulation of gene expression, neural anatomy, physiology and behaviour with special focus on the mechanisms of neuronal plasticity that underlie developmental sensitive periods that culminate in a mature functioning nervous system. Since the main goal of this class is to focus on the mechanisms of nervous system development we will draw on information gleaned from a wide range of animals from invertebrates to mammals focusing on conserved mechanisms throughout evolution.

Assessment Information

Written Exam 65%, Coursework 35%, Practical Exam 0%

Additional Assessment Information

One item of in-course assessment plus an exam consisting of MCQ and SAQ.

view the timetable and further details for this course

Disclaimer

All course information obtained from this visiting student course finder should be regarded as provisional. We cannot guarantee that places will be available for any particular course. For more information, please see the visiting student disclaimer:

Visiting student disclaimer