Study abroad in Edinburgh

Course finder

<< return to browsing

Semester 2

Advanced Biological Chemistry (CHEM10071)

Subject

Chemistry

College

SCE

Credits

20

Normal Year Taken

4

Delivery Session Year

2023/2024

Pre-requisites

Course Summary

Proteins and nucleic acids are amongst the most sophisticated and important molecules on Earth. This course of lectures and workshops provides a detailed understanding of their structures, functions, applications and the techniques used in their characterisation. Topics covered include: the analysis of sequence data, protein folding, dynamics and interactions, spectroscopic techniques, complex enzyme systems, biosynthetic pathways and the component enzymes, the use of biotechnology and biocatalysts in the production of commercially important materials e.g. clinically-relevant molecules for the pharma industry. The course will also incorporate recent case studies to explore key enzyme systems and important biosynthetic pathways, which feed the development of new synthetic routes, reagents, and novel biocatalysts for sustainable synthesis.This advanced course builds on material delivered in the semester 1 course Biological Chemistry 2.

Course Description

The course will consist of 30 lectures (or equivalent), with the following topics proposed: 1. Structural and Molecular Biology: The structures of biomacromolecules (DNA, RNA and proteins), structure determination (NMR, X-ray crystallography and CryoEM), post translational modification of proteins, synthetic gene design, recombinant protein expression, mutagenesis, unnatural amino-acids, methods of purification and characterisation including electrophoretic methods and mass spectrometry.2. In Silico Methods: Sequence analysis, databases, structure prediction and molecular dynamics. Some of the material in this section will be delivered as a workshop to foster the development of in silico skills. 3. Biophysical Techniques: The application of spectroscopic and analytical techniques to measure the physical properties of biomolecular systems, including kinetics, coupled assays, biothermodynamic methods (SPR, ITC), fluorescence, vibrational spectroscopy and imaging techniques. 4. Enzymes and Biosynthesis: This section will focus on enzymes, systems and their applications, beginning with an overview of the structures and functions of the different classes of enzyme. Case studies will be used to illustrate the application of techniques covered in earlier sections to the study of complex biological systems and processes. Topics covered will include specialised catalytic centres, analysis of biosynthetic gene clusters, protein engineering, directed evolution and highlights of recent natural product biosynthesis.

Assessment Information

Written Exam 100%, Coursework 0%, Practical Exam 0%

Additional Assessment Information

Written Exam 100%

view the timetable and further details for this course

Disclaimer

All course information obtained from this visiting student course finder should be regarded as provisional. We cannot guarantee that places will be available for any particular course. For more information, please see the visiting student disclaimer:

Visiting student disclaimer