KidsBrainIT: Using machine learning to predict childhood brain trauma patients' length of stay

John Palmer^a, Dr. Areti Manataki^b, Dr. Laura Moss^{c,d}, Aileen Neilson^{a,e}, Dr. T.Y.M Lo^{a,f}

^a Usher Institute of Population Health Sciences and Informatics, The University of Edinburgh, Edinburgh, UK ^b School of Computer Science, University of St. Andrews, St. Andrews, UK ^c Department of Clinical Physics, NHS Greater Glasgow and Clyde, Glasgow, UK

- ^d School of Medicine, University of Glasgow, Glasgow, UK
- ^e Edinburgh Clinical Trials Unit, Edinburgh, UK

^f Paediatric Critical Care Unit, Royal Hospital for Children & Young Person, NHS Lothian, Edinburgh, UK

Introduction

- Parents of critically ill children and intensivists are • interested in length of stay (LoS) prediction in paediatric critical care units (PCCU).
- **Traumatic Brain Injury (TBI)** is one of the leading causes of mortality and disability in children which can result in long PCCU LoS and lengthy rehabilitation times.
- No prior study has used clinical grade bedside lacksquarephysiological data within the first 24 hours of PCCU admission to predict LoS in PCCU.

Aim

To classify whether PCC TBI patient's LoS will be greater than equal to 4 remaining days using only the first 24 hours of standard physiology, basic demographic, and clinical data after admission.

Methods - Data

- A data informatics feasibility study was conducted.
- KidsBrainIT Dataset (Figure 1) was used:
 - **Real world multi-national multi-centre** (16 PCCU from 7 countries) prospectively routinely collected data.
 - \circ Originated from TBI paediatric patients (n = 214), aged 2 to < 16 years old.
 - First **international** fully anonymised paediatric dataset with **clinical grade physiological** recordings

KidsBrainIT Dataset: Bedside Physiology Clinical Data: Demographic Data Glasgow (1 minute resolution): Data: Coma Score, Standard bedside Age, sex and **Pupil Reaction** physiology centre Score, LoS measurements

Figure 1: The KidsBrainIT dataset consists of 214 data files (16 PCCU in 7 countries) over 3 time periods.

Methods - Data Challenges

1) *Missing data:*

- Patients have different sets clinically directed of physiology measurements. • Measurement calibration.
 - Imputation
- Forward fill, or MICE using Bayesian linear regression.
- 2) Data collection artifacts: • Measurement calibration. • Measurement artifacts Cleaning
 - Cleaned by clinical expert. • Removed data imputed.
- 3) *Multicenter*: Check LoS distributions are uniform between centers.
- 4) Relationship to age: Strong relationship with physiology baseline and age in children.

100 experiments per model architecture.

AUC score for the 10-folds.

Binary Classifiers:

Logistic Regression, SVM, Naïve Bayes, K-Nearest Neighbours, XGBoost, Neural Network (Fully connected) and LSTM.

Conclusions and Future Work

_
>

Data-driven PCCU LoS prediction for childhood TBI is possible using the first 24 hours of bedside physiological data.

Future work should include (i) **dynamic** prediction of the remaining day-by-day LoS for paediatric TBI, and (ii) prediction of LoS for other pathologies.

References

[1] Castiñeira, D., et al. (2020). Adding continuous vital sign information to static clinical data improves the prediction of length of stay after intubation: a data-driven machine learning approach. *Respiratory care, 65*(9), 1367-1377.

[2] Jones, P. A., et al. (2003). Graphical display of variability and inter-relationships of pressure signals in children with traumatic brain injury. *Physiological measurement*, *24*(1), 201.

[3] Jones, P. A., et al. (2003). Traumatic brain injury in childhood: intensive care time series data and outcome. British journal of neurosurgery, 17(1), 29-39.

[4] Chambers, I. R., et al. (2006). Critical thresholds of intracranial pressure and cerebral perfusion pressure related to age in paediatric head injury. Journal of Neurology, Neurosurgery & Psychiatry, 77(2), 234-240.

[5] Güiza, F., et al. (2015). Visualizing the pressure and time burden of intracranial hypertension in adult and paediatric traumatic brain injury. Intensive care medicine, 41, 1067-1076.

[6] Xue, Y., et al. (2019). Predicting ICU readmission using grouped physiological and medication trends. Artificial intelligence in medicine, 95, 27-37.

Acknowledgements: Precision Medicine DTP, this work is supported by the Medical Research Council [grant number MR/N013166/1]

Contact Email: j.e.palmer-1@sms.ed.ac.uk

Ensemble modelling

method had the best

CV AUC=0.87)

