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Figure 2. Time-series pattern of RSV cases in Japan Figure 3. Spatial distribution of RSV cases in Japan

during 2013-2019 during 2013-2019

Table 2. Pooled results of multivariate models for 47 prefectures in Japan

seasons in tropical regions. In Japan, RSV infection

generally occurs during the autumn and winter.
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Table 1. Descriptions of data
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In (E(Yiit)) = &+ bij + Cijiey + BruXruGje) + BarXarqjo + Figure 6. Forecasting plots of machine learning models of RSV cases in Tokyo, Japan

BvXvjr) + BpXpje) + BwsXwsije) + Eijer Eije ~ AR1(P)

Where Y;;;~ Negative Binomial Distribution, is the number of RSV-confirmed

CONCLUSION

Our research indicates no apparent spatial pattern in RSV cases in Japan from 2013 to

cases in prefecture i, year j and week t,

a; is the overall mean of prefecture i, 2019. Meteorological factors exhibited heterogeneous impacts on RSV transmission

. A~ 2 i i / / [ [] [] [] [ [] [ . gn
byj ~ N(0,8) is the random main effect of year ; of prefecture . across different prefectures, resulting in evident spatial clustering effects in specific

cijiey ~ N(O, 62) is the random main effect of week t at year j of prefecture i, o _ _
_ _ _ _ associations. Our forecasting analysis demonstrated that BRNNs surpassed both
B is the fixed main effect of the meteorological factor k,

ARIMA and LSTM models in predictive accuracy. This highlights the substantial promise

&ije ~ N(O, 52) is the error term, follows the stationary auto regressive

AR(1)~cov(gijt, &ijts)- of BRNNSs for anticipatory modelling of future RSV epidemics.
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