

Hugh Sinclair, Lizzie Dingle, Mikael Attal, Maggie Creed, Simon Mudd, Laura Quick

Edinburgh Land Surface Dynamics Group

Extreme precipitation events and flood models in the Himalaya

How can we use geomorphic data to understand the nature and relative magnitude of these events?

On Aug 6th 2010 a 'cloudburst' devastated the region – one rain gauge recorded just 28mm of rain in 24 hrs.

Event reconstructed using TRMM and modelled as a Mesoscale Convective System

So true scale of storm events and hence their relative magnitude difficult to assess from meteorology data

Geomorphic data relocates highest impact storm to northeast of Indus River

But how significant was this event?

Dehra dun N..0.0.08 Chitwan dun DELHI • MAHSI Main Frontal Thrust (MFT) ALLAHABAD PATNA 80°0'0"E 85°0'0"E Source: SRTM 90m DEM

Gravel-sand transition

Coarse sediment is trapped close to the mountains

12 km downstream of the Himalaya = sand

Coarse sediment and flood risk

The Karnali River

- Average annual discharge of 4.31 x
 10¹⁰ m³
- Rajapur district population >10,000
- 2014 floods 15 m deep flow entering the Plain
- Hugely mobile river!

Flooding – not just about water

Existing HEC-RAS output based on 20 yr flood discharge (Credit: Dr Dilip Gautam and the Department of Hydrology and Meteorology, Nepal)

Existing modelling - HECRAS

- 30 m SRTM DEM from 2001 with
 +/- 10 m vertical error
- VERY LOW RELIEF LANDSCAPE

Flooding – not just about water

Sensitivity of the tools

2001 SRTM - 30m

2013 TanDEMx – 10m

Flooding – not just about water

Throw some sediment in....

Bed elevations in 2016

Bed aggradation 2 – 5 m along channel

Conclusions

Extreme events are very localised and so require field-based reconstructions of storm precipitation

Flood models need high resolution DEMs and understanding of sediment transport

Future strategy involves increase hydrological monitoring and real time modelling linked to local communities