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The rising prevalence of age-related eye diseases, particularly age-related macular

degeneration, places an ever-increasing burden on health care providers. As new treat-

ments emerge, it is necessary to develop methods for reliably assessing patients’ disease

status and stratifying risk of progression. The presence of drusen in the retina represents a

key early feature in which size, number, and morphology are thought to correlate signifi-

cantly with the risk of progression to sight-threatening age-related macular degeneration.

Manual labeling of drusen on color fundus photographs by a human is labor intensive and

is where automatic computerized detection would appreciably aid patient care. We review

and evaluate current artificial intelligence methods and developments for the automated

detection of drusen in the context of age-related macular degeneration.
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1. Introduction Drusen appear as clusters of white or yellow spots in color
With longer life expectancy, age-related disorders are

increasing the burden placed on health care providers. In

particular, age-related macular degeneration (ARMD) is one of

the major causes of vision loss in the elderly.28,30 ARMD

currently affects 6 million people in the UK alone28 and was

estimated to have cost the country’s economy £155 million in

2011.49 By 2040, the number of people affected globally by the

disease is projected to be 288 million.58

The earliest phase of ARMD is typically observed as the

presence of (asymptomatic) macular drusen, often inciden-

tally found on examination or fundus imaging. Drusen are

small deposits of predominantly lipid, acellular debris that

accumulate between the retinal pigment epithelium and

Bruch’s membrane. Although the presence of small drusen is

not itself diagnostic of ARMD, as drusen frequently occur in

normal aging, increasing number and size of drusen increase

the risk of progression to visually symptomatic ARMD. Later

signs of ARMD, such as pigmentary changes of the retinal

pigment epithelium that occur before the development of

geographic atrophy (so-called dry ARMD) and exudative ab-

normalities (so-called wet ARMD) enable more established

gradings3,5,33 and classification of ARMD.2,28,32,34
Fig. 1 e Illustration of supervised machine learning pipeline. 1)

enhance image features. 2) Features such asmeasures of entropy

or geometric properties are extracted. 3) Features are grouped as

often undergo a selection process to decide which features best

tries to separate the data into the target, distinct classes. 5) The

classification and defines the classes. 6) Testing is performed b
fundus photographs and broadly exist as twomain types, hard

and soft. Hard drusen are round, small, discrete lesions with

defined edges, whereas soft drusen are less defined and often

confluent. Drusen are rarely homogenous in their composi-

tion. Because of their yellow color and brightness on color

fundus photographs, drusen are distinguishable by the

human eye, but computer algorithms to automatically detect

them need to be robust to the presence of other similarly

brightly appearing pathology such as hard exudates. Indis-

tinct borders for drusen appearing in color fundus photo-

graphs are challenging for conventional image-processing

techniques such as edge detection andmorphological filtering

and have been discussed in detail in an earlier review.15 To the

best of our knowledge, no reviews cover recent developments,

involving the application of artificial intelligence (AI) and deep

learning (DL) techniques.

AI is a long-standing field of computer science that aims to

simulate human intelligence by perceiving its environment

and taking appropriate action to achieve a set of goals, one of

which is decision-making. Machine learning (ML) is an

approach to AI, partially inspired by how humans learn.37

Learning is achieved through examples. If a child is pre-

sented with a new object, they will use features such as color,
Image preprocessing is performed to reduce noise and

, energy, color and texture of image intensities, and spatial

numerical vectors (forming the image representation) and

represent the image. 4) Training phase builds a model that

classifierdthe mathematical functiondthat implements

y classifying unseen data belonging to know classes.
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shape, and texture so that when they observe the object again

they will use what they have learned to identify or categorize

it as something they have previously seen. Similarly,manyML

classification algorithms use features from training examples

to discover or confirm patterns that categorize subsets. When

new, unseen data are presented, the algorithm can classify

which category they belong to (Fig. 1). These features can be

learned by either training from previous examples (i.e., su-

pervised learning) or discovered by the algorithm (i.e., unsu-

pervised learning).

DL is a subset of ML that is gaining prominence for medical

imaging38,45 and ophthalmology14 because of increasing re-

ports of high performance for clinical classification and

decision-making. DL is based on neural networks, a class of

algorithms inspired by the human brain. In a neural network,

the neurons are organized in layers and implement simple

operations on the input data or from the output of previous

layers. In a deep neural network, the number of layers ismuch

higher than that in conventional neural networks (indicatively

10 or more as opposed to 2-3). The connections between the

layers are assigned values, called weights, representing

connection strengths. Learning the weights is the objective of
Fig. 2 e An overview of the ML methods in discussion and wher

Networks is a DL technique. ARMD, age-related macular degene

machine learning; RGB, red, green, blue; SVM, support-vector m
the training process. Training and testing a deep neural

network require large amounts of labeled data (i.e., known

classes).

In this review, we report and evaluate current AI strategies

and developments for the automated detection of drusen in

the context of ARMD (Fig. 2). Although some recent work has

begun to explore the potential for automated drusen detection

by optical coherence tomography, with varied methods and

mixed results,10,14,27,50,56,60 the focus of this review is on color

fundus imaging of the retina.
2. Methods

2.1. Inclusion and exclusion criteria

We aimed to include all published studies applying AI to

automatic drusen detection in color fundus photographs. In-

clusion criteria were (1) original study, (2) those written in

English, and (3) those that had validation by performance

against at least onemanual grader. The following studieswere

excluded: (1) reviews; (2) nonhuman research; (3) non-English
e they are applied at each stage. Deep Convolutional Neural

ration; DL, deep learning; HSV, hue, saturation, value; ML,

achine.
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language studies; (4) studies that involvedmethods other than

color fundus photography (e.g., optical coherence tomogra-

phy); (5) studies that did not feature robust validation, as

outlined in the following paragraph.

Validation is the process of showing quantitatively that

an algorithm performs correctly through comparison of its

output to a reference standard, for example, manual grading

of images by experts.57 Any article that did not include

validation was excluded. The performance of an algorithm

is typically measured using criteria such as accuracy,

sensitivity, specificity, and area under receiver operating

characteristic.24 Another important aspect is the size of the

data set: the image set, algorithm tested, must be suffi-

ciently large to be representative of the target population

and to be suitable for the number of neural network pa-

rameters to be trained. AI methods are not immune to small

sample size effects that can contaminate the evaluation of a

proposed system. For instance, color fundus photographs

can differ in appearance between patients, and disease

manifestations are also of a varying nature. Considering

this, articles that mentioned validation of less than 50 im-

ages were excluded.
2.2. Data extraction

For all identified studies, an independent reviewer (E.P.)

screened the titles and abstracts. Irrelevant and duplicate

articles were removed, and the remaining articles were

assessed for agreement with the inclusion and exclusion

criteria by full-text review. Data extracted from studies at

this stage included title, year of publication, authors, study

aim, study type, number of images (training and test), diag-

nostic criteria, participant selection criteria, method of

fundus imaging, algorithm, performance metric(s) results,

and conclusions. The most recent articles were hand

searched following the same strategy, filtered for the current

year (i.e., 2018), and subjected to the same inclusion criteria.

A similar strategy was followed for articles cited within the

bibliographies of the results.
3. Results

A total of 2236 articles were identified in the initial search

performed in 2017. After filtering for ARMD, 1318 articles were

excluded, such as those featuring diabetic retinopathy (n¼ 42)

and glaucoma (n ¼ 42). From the remaining 918 articles, 834

were excluded because they did not use color fundus photo-

graphs (n ¼ 18), did not use imaging (n ¼ 770), or were not

reviews (n ¼ 34). Seventy-three articles did not meet the se-

lection criteria, such as articles not reporting performance (n

¼ 9) or featuring software optimization (n ¼ 3), hardware re-

ports (n¼ 2), or fewer than 50 images for validation (n¼ 12). At

the end, 8 articles met all inclusion criteria. One additional

article was included after searching bibliographies, and 5 ar-

ticles were found by hand searching for this current year

(2018). The resulting 14 articleswere considered in this review.

They all used ML and DL techniques for drusen detection in

color fundus photographs.
3.1. Study designs and populations

The 14 studies involve 4 publicly available data sets (i.e.,

automatic retinal image analysis,62 STructured Analysis of the

REtina,26 Age Related Eye Disease Study [AREDS],2 and Reti-

naGallery12), 3 private data sets and 1 sourced from a tele-

medicine platform and a cohort from an independent study.6

Some studies contained overlapping report analyses on the

same data sets, but used different methods. Four articles

aimed to achieve disease or no-disease classification. Six ar-

ticles aimed to classify ARMD severities according to AREDS2

or in-house grading criteria (Cologne Image Reading Center

and Laboratory [CIRCLE]). Two articles aimed to classify dry

ARMD vs. normal images and 1 wet ARMD vs. dry ARMD or

normal (Table 1).

3.2. Preprocessing and feature extraction

In automatic detection, preprocessing is a commonly used

step to enhance an image to better facilitate the extraction of

features relating to objects of interest. The human eye dis-

tinguishes “features” of disease in an image (such as

geographic atrophy and drusen), but AI algorithms need to

extract “features” measured from the pixels pertaining to an

object (i.e., drusen). In addition, a color fundus photograph

typically contains a black border that needs either to be

avoided or eliminated because these pixels will not be of any

relevance. Retinal landmarks (e.g., the optical nerve boundary,

blood vessels, and macula) may obstruct features of small

objects, so their removal may further improve automatic

detection by reducing sources of false targets for drusen

detection. A color fundus photograph might also contain ar-

tifacts (e.g., from dust particles on the lens) and display areas

of uneven illumination that preprocessing can eliminate. The

type of preprocessing used in the studies included depended

on the particular features used (Table 1).

Pixel values in imaging typically range from 0 (black) to 255

(white) per color channel (e.g., red, green, blue or hue, satu-

ration, value). In color fundus photographs, drusen appear as

small regions of bright pixels. Properties calculated from the

image histogram (i.e., a plot of the number of pixels for each

intensity value in the range and for each color channel) such

as energy, entropy, and intensity have all been used as fea-

tures for classifying whether regions in an image contain

drusen or not. Contrast Limited Adaptive Histogram Equal-

ization48 has been used1,25,42,43,61 to improve contrast in the

image. This well-established technique involves flattening the

image histogram of relative color intensities to make

the whole image as similar as possible, ultimately enhancing

histogram-based features. Two studies used a median filter,

which is applied after removing the black border to smooth

high-frequency noise, but at the cost of reducing contrast.31,47

Grivensen and coworkers20 manually assigned individual

pixels a probability that it is part of a drusen and automati-

cally extracted their boundaries using intensity and contrast

characteristics to then be used as features for training. Burlina

and coworkers7 obtained training regions of background (no

pathology) and testing masks for abnormal areas (candidate

drusen) using standard image-processing techniques such as

median filtering, morphological dilation, and thresholding.

https://doi.org/10.1016/j.survophthal.2019.02.003
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Table 1 e Included articles using AI methods for automated detection of ARMD

Reference Data set Fundus camera (resolution) Preprocessing Feature Output

Hijazi et al 201025 144 (ARIA) Not reported CLAHE; retinal vessels segmented by

thresholding and OD segmented using

intensity peaks of image (identified by

sliding window)

RGB and Hue Saturation Intensity (HSI)

histogram of each image

conceptualized to set of curves (time

series)

Disease/no disease

Burlina et al 20117 66 (private) Zeiss FF4 40� FOV (pupils dilated);

images resized to 1000 � 1000

Pyramid decomposition of green

channel for regions of high gradient

magnitude to create logical masks for

training and testing. Areas of high

gradient magnitude indicate artifacts

and vessels where low gradient

magnitude indicate normal retinal

tissue

Intensity, color, and gradient features

of background (normal retina) and

candidate abnormal areas

Disease/no disease

Zheng et al 201261 101 (ARIA); 97 (STARE) TOPCON TRV-50 fundus camera 35�

field of view (700 � 605)

Mask of whole image to capture

circular fundus ROI. Color

normalization and uneven

illumination is applied. CLAHE to

enhance contrast. Blood vessels

identified using wavelet features.

Image represented as quadtree,

separated by their homogeny, defined

by similar pixel values. Image mining

algorithm returns features

Disease/no disease

Kankanaballi

et al 201331
2772 (NIH AREDS) Not reported Green channel smoothed by large

median filter. Median filtered image

subtracted from original green

channel and the result multiplied to

increase contrast

SIFT/SURF features of L*a*b color

channel

ARMD severity

Grivensen

et al 201320
407 (EUGENDA) TOPCON TRC 501 � 50� field of view;

Canon CR-DGi (nonmydriatic) 45� field

of view

Drusen manually outlined Each pixel in image assigned

probability that it belongs to drusen

candidate. Boundary of the candidate

extracted using intensity and contrast

characteristics

ARMD severity

Mookiah et al 201443 161 (ARIA); 83 (STARE);

540 (KMC)

Carl Zeiss Meditec fundus camera 50�

field of view (748 x 576); TOPCON TRV-

50 fundus camera 35� field of view (700

x 605); TOPCON non-mydriatic retinal

camera (TRC-NW200) (480 x 364)

CLAHE Entropy features: Shannon, Kapur,

Renyi, Yager; higher order spectra

(HOS)

Wet/dry/no disease

Mookiah et al 201442 540 (KMC) TOPCON nonmydriatic retinal camera

(TRC-NW200) (480 x 364)

CLAHE Features for whole image obtained by

discrete wavelet transform (DWT)

decomposition. Linear features

extracted from wavelet coefficients

(mean, variance, skewness, kurtosis,

Shannon entropy, Renyi entropy,

Kapur entropy, relative energy,

relative entropy, entropy, Gini index).

Wet/dry/no disease

Burlina et al 20168 5500 (NIH AREDS) Not reported Resizing and cropping images to

conform to the expected OverFeat

input network

SURF, SIFT, wavelet features ARMD severity
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Phan et al 201647 279 (telemedicine

platform)

Zeiss, DRS, Topcon models 45� FOV

(1400, 2,200,3240 pixels along diameter

of image)

Preprocessing from31 Color histograms (RGB, L*a*b color

spaces)

Texture: local binary patterns,

histogram of oriented gradients (HOG),

SURF

ARMD severity

Acharya et al 20171 945 (KMC) Zeiss FF450 plus mydriatic fundus

camera (resized to 480 � 360 from 2588

� 1958)

CLAHE Pyramid of histograms of orientated

hradients (PHOG) to describe the shape

and pattern. Features from

descriptordenergy: uniformity of

image; entropy features: approximate,

fuzzy, Kolmogorov-Sinai, modified

multiscale, permutation, Renyi,

sample, Shannon, Tsallis, and wavelet

Nonlinear features: fractal dimension

(D), Hjorth (activity, complexity,

mobility parameters), Kolmogorov

complexity, largest Lyapunov

exponent, Lempel Ziv complexity,

relative qualitative analysis

(parameters entropy, transitivity,

trapping time, recurrence of the first

type and second type, longest vertical

line), entropy, determinism,

laminarity, maximal diagonal line

length, averaged diagonal line length,

recurrence rate, recurrence time of

RQA parameters

Wet/dry/no disease

Burlina et al 20179 5664 (NIH AREDS) Not reported Resizing and cropping images to

conform to expected OverFeat input

network

OverFeat (OF) universal features ARMD severity

Garcia-Floriano

et al 201718
397 (STARE); 70

(RetinaGallery)

Not reported OD located using.17 Green channel. Hu moments were used to describe

each object as a measurable quantity

calculated from the shape of a set of

points

Disease/no disease

Tan et al 201855 1110 (KMC) Zeiss FF450 plus mydriatic fundus

camera (2588 x 1958)

Image rescaled to 180 x 180 to conform

to network input dimensions

Features learned through neural

network

Disease/no disease

Grassman et al 201819 120,656 (AREDS);

5555 (KORA)

Zeiss FF series fundus camera;

TOPCON TRC-NW5S 45� fundus

camera

Normalization of color balance and

local illumination by Gaussian

filtering. Images resized to 512 x 512 to

conform to neural network input

dimensions

Features learned through neural

network

ARMD severity

AI, artificial intelligence; ARMD, age-related macular degeneration; CLAHE, Contrast Limited Adaptive Histogram Equalization; RGB, red, green, blue; SIFT, Scale-Invariant Feature Transform; SURF,

Speeded Up Robust Features; ARIA, automatic retinal image analysis; STARE, STructured Analysis of the REtina; AREDS, Age Related Eye Disease Study; OD, optic disc; ROI, region of interest; EUGENDA,

The Euregio genetic database; KMC, Kasturba Medical College; RQA, recurrence quantification analysis; NIH, National Institutes of Health.
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Table 2 e Included articles using ML for classification of disease/no disease

Reference Images with
disease (data set)

Images with no
disease (data set)

Classifier Reference
standard

Performance

Hijazi et al25 86 (ARIA) 56 (ARIA) Case-based reasoning

(CBR)

Labels from ARIA

project

ACC ¼ 75%; SEN ¼ 82.00%;

SPEC ¼ 65.00%

Burlina et al7 39 (private) 27 (private) Constant false alarm

rate (CFAR)

Graders from JHU

Wilmer Eye

Institute

SEN ¼ 95%; SPEC ¼ 96%;

PPV (positive predictive

value) ¼ 97%;

NPV (negative predictive

value) ¼ 92%

Zheng et al61 101 (ARIA); 59 (STARE) 60 (ARIA); 38

(STARE)

Naı̈ve Bayes, SVM Labels from data set SPEC ¼ 100%; SENS ¼ 99.4%;

ACC ¼ 99.6%

Garcia-

Floriano

et al18

34 (STARE); 33

(RetinaGallery)

41 (STARE); 37

(RetinaGallery)

SVM Labels from STARE

and

RetinaGallery

ACC ¼ 92.1569%; precision ¼
0.904;

recall ¼ 0.922; F-measure ¼
0.921

ML, machine learning; SVM ,support-vector machine; ARIA, automatic retinal image analysis; STARTE, STructured Analysis of the REtina;

AREDS, Age Related Eye Disease Study.

Performances reported as accuracy (ACC), sensitivity (SEN), and specificity (SPEC).
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Garcia-Floriano and coworkers18 also used mathematical

morphology to highlight drusen areas and healthy macular

regions. Subsequently, features called Hu moments, a well-

recognized tool for object recognition in computer science,

were then calculated from each pixel.

After the preprocessing stage, it is necessary to select

which features best perform as descriptors of the object of

interest (i.e., drusen) within a classification scheme.
3.3. Feature selection

Feature selection, reported in 6 articles, is used to select a

group from the extracted features or create variables that

achieve the best classification performance. This process

removes potentially irrelevant or confusing features and

avoids model overfitting. In other words, it identifies salient

features that can be used to distinguish disease images from

healthy ones most effectively. Feature selection returns a

numerical feature vector, which is the representation then

used to train a classification algorithm (section 3.4).

Zheng62 used L2 loss function, an established FS technique.

Their aimwas to identify and filter the pixel intensity features

that were produced by noise. The resulting list was then

ranked, and the top features were selected to be used for

disease/no-disease classification.

Garcia-Floriano and coworkers18 used a filter from a

feature-selection software package.21 The filter uses

correlation-based feature selection that evaluates the predic-

tive capability of features and chooses subsets highly corre-

lated to each class.22

To assess features that determine whether an image was

dry or no ARMD, Mookiah and coworkers42,43 used parametric

and nonparametric tests (e.g., t-test and Wilcoxon ranking) to

determine the top features, achieving the best one-versus-all

classification for each class. With each ranked feature incre-

mentally nested into the classification algorithm, they re-

ported in one article43 a texture feature (from a Gabor filter) as

the highest ranking. In their second article,42 the best feature

was derived using the top energy features (entropy measures
and their coefficients and averages) to compute an index for

each image. The authors proposed the index value as a

method for devising a threshold so that in a virtual clinic, the

threshold would be used to determine dry ARMD from no

ARMD.

In the study by Acharya and coworkers,1 feature selection

was achieved combining a shortest-path algorithm, inspired

by ants’ behavior (ant colony optimization), with a genetic

optimization algorithm, inspired by mutation and crossover

operators in genetics (genetic algorithm). The overall aim was

to classify dry ARMD and wet ARMD from no ARMD. The

highest ranking energy and entropy features were selected

according to analysis of variance to obtain a P value. The top

10 features (1 energy, 3 entropy, 6 other nonlinear) (Table 1)

most statistically significant (P < 0.05) features were used for

classification.
3.4. Classification

Classification uses the features selected to identify the model

that best separates the data into the desired classes. A

collection of images is typically separated into training and

testing sets, of which the former is used to develop the model

and the latter is used to test it. In the context of ARMD, this

would test themodel’s ability to classify disease/no-disease or

dry/wet ARMD. To evaluate the accuracy of the classifier,

cross-validation is often performed.52 The algorithm perfor-

mance is commonly reported in terms of statistics of mea-

sures, comparing the classifiers’ decisions against those of

one or more human experts (Tables 2e4). Then, we describe

the variety of classifications used in the studies included in

this review.

3.4.1. Disease/no disease
Hijazi and coworkers25 proposed a case-based reasoning sys-

tem to develop an automated screening tool to classify 144

color fundus photographs into ARMD or normal categories.

Case-based reasoning is a problem-solving technique based

on the observation of how humans use previous examples or

https://doi.org/10.1016/j.survophthal.2019.02.003
https://doi.org/10.1016/j.survophthal.2019.02.003


Table 3 e Included articles using ML for classification of ARMD severity

Reference Number of images in ARMD
severity category

Classifier Reference standard ARMD category
test

Performance

Kankanaballi

et al31
EIPC:

� 626 (category 1)

� 89 (category 2)

� 715 (category 3)

� 715 (category 4)

MIPC:

� 626 (category 1)

� 89 (category 2)

� 1107 (category 3)

� 950(category 4)

MS:

� 180 (category 1)

� 13 (category 2)

� 114 (category 3)

� 78 (category 4)

Random forest Expert grader (1) {1 & 2} vs. {3 & 4}

(2) {1 & 2} vs. {3}

(3) {1} vs. {3}

(4) {1} vs. {3 & 4}

EIPC: 95.4% (SPEC), 95.5% (SEN),

95.5% (ACC)

MIPC: 91.6% (SPEC), 97.2% (SEN),

98.9% (ACC)

MS: 98.4% (SPEC), 99.5% (SEN),

98.9% (ACC)

EIPC: 96.1% (SPEC), 96.1% (SEN),

96.1% (ACC)

MIPC: 95.7% (SPEC), 96.0% (SEN),

95.9% (ACC)

EIPC: 98.6% (SPEC), 95.7% (SEN),

97.1% (ACC)

MIPC: 96.3% (SPEC), 96.8% (SEN),

96.7% (ACC)

EIPC: 96.0% (SPEC), 94.7% (SEN),

95.4% (ACC)

MIPC: 95.4% (SPEC), 97.7% (SEN),

97.1% (ACC)

Grivensen

et al20
Set A:

� 17 observer 1, 20 observer

2 (no ARMD)

� 13 observer 1, 9 observer

2 (early ARMD)

� 22 observer 1, 23 observer

2 (intermediate ARMD)

Set B:

� 216 observer 1, 218 observer

2 (no ARMD)

� 64 observer 1, 64 observer

2 (early ARMD)

� 75 observer 1, 76 observer

2 (intermediate ARMD)

Average number of drusen:

� 130.4 � 178.1 (observer 1),

198.5 � 243.1 (observer 2)

Average size of drusen (mm2):

� 5,873 � 10,027 (observer 1),

5115 � 8257 (observer 2)

K-nearest

neighbor; linear

discriminant

classifier;

random forest

2 Observers Drusen area:

observer 1 vs.

algorithm

observer 2 vs.

algorithm

Interobserver

Drusen diameter:

observer 1 vs.

algorithm

observer 2 vs.

algorithm

Interobserver

Risk assessment:

observer 1 vs.

algorithm

observer 2 vs.

algorithm

0.91 (ICC)

0.86 (ICC)

0.87 (ICC)

0.66 (ICC)

0.69 (ICC)

0.79 (ICC)

0.84 (observer SEN), 0.96

(observer SPEC), 0.948

(algorithm AUC),

0.765 (Kappa)

0.85 (observer SEN),

0.954 (observer SPEC),

0.954 (algorithm AUC),

0.760 (Kappa)

Phan et al47 Good quality:

� 50 (category 1)

� 43 (category 2)

� 24 (category 3)

� 22 (category 4)

Poor quality:

� 29 (category 1)

� 36 (category 2)

� 41 (category 3)

� 34 (category 4)

SVM & random

forest

2 graders {1} vs. {2} vs. {3} vs. {4}

{1 & 2} vs. {3} vs. {4}

{1} vs. {2 & 3} vs. {4}

SVM: 62.7% (ACC)

Random forest: 61.7% (ACC)

SVM: 75.6% (ACC)

Random forest: 74.2% (ACC)

SVM: 72.4% (ACC)

Random forest: 69.9% (ACC)

AREDS, Age Related Eye Disease Study; ARMD, age-related macular degeneration; EIPC, equal number of images; MIPC, maximum number of

images per class; ML, machine learning; MS, manually selected images; SVM, support-vector machine.

Interclass correlation coefficient (ICC) was set at 95% confidence interval. Kappa scores measure interrater agreement. Performances reported

as area under curve (AUC), sensitivity (SEN), specificity (SPEC), and accuracy (ACC). ARMD categories defined using AREDS categories5 or by in-

house grading criteria (Cologne Image Reading Center and Laboratory [CIRCLE]).
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information to solve new, but similar, problems. If a case-

based reasoning system is given a new case, it will use the

previous most similar cases in its case base to solve the

problem. Each image histogramwas conceptualized to a set of

curves, called a time series, and used to generate a 2-step

case-based reasoning classification. The first case consisted
of enhanced green channel images, with the blood vessel

pixels replaced with null values. The second case contained

the same but with the further process of removing the optic

disc. Histograms and their time series of a collection of unseen

graded images were passed to the first case for comparison to

the training images. An algorithm called dynamic time

https://doi.org/10.1016/j.survophthal.2019.02.003
https://doi.org/10.1016/j.survophthal.2019.02.003


Table 4 e Included articles using ML for classification of wet/dry/no disease

Reference Images with
no disease
(data set)

Images with
ARMD (data set)

Classifier Reference standard Performance

Mookiah et al43 101 (ARIA)

36 (STARE)

270 (KMC)

60 (ARIA)

47 (STARE)

270 (KMC)

Naı̈ve Bayes, K-nearest neighbors,

decision tree, probabilistic

neural network, SVM

Ophthalmologist group ACC (ARIA) ¼ 95.07%

ACC (STARE) ¼ 95.00%

ACC (KMC) ¼ 90.19%

Mookiah et al42 270 (KMC) 270 (KMC) Naı̈ve Bayes, K-nearest neighbors,

probabilistic neural network, SVM

Ophthalmologist group ACC ¼ 93.70%

SEN ¼ 91.11%

SPEC ¼ 96.30%

Acharya et al1 404 (KMC) 517 Dry ARMD (KMC)

24 Wet ARMD (KMC)

SVM Ophthalmologist group ACC (PSO with SVM) ¼ 85.12%

SEN (PSO with SVM) ¼ 87.2%

SPEC (PSO with SVM) ¼ 80%

ARMD, age-related macular degeneration; ML, machine learning; SVM, support-vector machine; PSO, particle swarm optimization; ARIA,

automatic retinal image analysis, STARE, STructured Analysis of the REtina; AREDS, Agre Related Eye Disease Study; KMC, Kasturba Medical

College.

Performances reported as sensitivity (SEN), specificity (SPEC), and accuracy (ACC).
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warping was used to measure the similarity between the

histograms and time series of the testing and training images.

If the unseen image was below a certain similarity measure, it

was then passed to the second case for reassessment. The

output is whether the input image is similar to either the

learned time series of an ARMD image or a healthy image in

the case base. A specificity of 82% was reported for the effec-

tiveness of the classifier in identifying ARMD images, 65%

specificity for the classifier identifying normal images, and

75% accuracy in classifying images as ARMD or normal

(Table 2). This two-pass approach offered a system whereby

isolation and segmentation of drusen was not required;

however, removal of vessels and the optic disc was needed to

improve the accuracy.

Constant false alarm rate detection is an adaptive algo-

rithm that has been used to identify normal or intermediate

ARMD in color fundus photographs. Constant false alarm rate

is used in radar systems where true signal and noise signals

need to be distinguished to determine origin. This returns a

probability that the signal is not a false alarm. Burlina and

coworkers7 adopted such a system on 66 color fundus pho-

tographs to separate ARMD from healthy images. Training

and testing datawere constructed from themasks obtained by

preprocessing (normal retina tissue mask and edge/artifact

mask). The constant false alarm rate detector was trained on

the red, green, blue and hue, saturation, value color spaces of

each mask, creating the signal that provides a feature for

support-vector machine (SVM) classification. SVM classifica-

tion is a form of ML based on regression in which data are

projected to a much higher dimensional space to promote

linear separability of the target classes. The ability of the

classifier to determinewhether the image contains interesting

(i.e., potentially disease) changes was reported as having a

95% specificity and 95% sensitivity, with a positive predictive

value of 97% and a negative predictive value of 92% (Table 2).

The same authors later reported image-mining techniques

for disease/no-disease classification.61 In this method, images

were represented as quadtrees, a form of hierarchical tree

data representation, separated by their homogeny that is

defined by similar pixel values. To extract features of the

training image quadtrees, a mining algorithm was used to
take features from the tree such as the pixel color similarity

between parent and child nodes. This returned a set of fea-

tures that were reduced using an SVM ranking method.16 To

then classify the testing images, ML algorithms (Naı̈ve Bayes

and SVM) were used. Best detection was reported with SVM.

This was then applied to new data to best predict which group

the data should lie in. The authors reported 100% specificity,

99.4% sensitivity, and 99.6% accuracy. This system required

blood vessel removal to improve its accuracy (Table 2).

Garcia-Floriano and coworkers18 used an SVM to classify 70

images into disease/no-disease categories. The proposed

method was first evaluated on the entire data set with and

without feature selection.Theyobtainedanaccuracyof 83.58%

for both evaluations. The proposed method failed in certain

images due to suboptimal image quality. Removal of poor-

quality images and evaluation with feature selection

improved accuracy to 92.16%.

3.4.2. ARMD severity
Phan and coworkers47 attempted to classify ARMD severity

according to their AREDS categories5 using visual words, also

known as “bag of words.” The most salient features in the

image were detected and their frequencies counted and bin-

ned in to a histogram. This forms a so-called vocabulary that

can be used for automated detection of the same words in an

unseen image. The authors used Speeded Up Robust Features

to build the vocabulary from different color spaces (red, green,

blue and a color space describing lightness, green-red, and

blue-yellow, called L*a*b) of 279 images, including poor-

quality images, to build the vocabulary. SVM and random

forest classifiers were tested with and without feature-

selection steps. They report the best performance for ARMD

screening with SVM classifier (area under curve: 87.7%). For

grading the classes of ARMD, they report {1} vs. {2} vs. {3} vs. {4}

accuracy of 62.7%. Accuracy of 75.6% and 72.4%were obtained

for {1&2} vs. {3} vs. {4} and for {1} vs. {2&3} vs. {4}, respectively

(Table 3).

Kankanaballi and coworkers31 also used Speeded Up

Robust Features along with a faster version called Scale-

Invariant Feature Transform to extract local features in 2772

AREDS images. These features were taken from the L*a*b color

https://doi.org/10.1016/j.survophthal.2019.02.003
https://doi.org/10.1016/j.survophthal.2019.02.003


s u r v e y o f o p h t h a lm o l o g y 6 4 ( 2 0 1 9 ) 4 9 8e5 1 1 507
space to generate a vocabulary for a visual words algorithm.

They evaluated the performance of the algorithm to correctly

classify images into AREDS categories5d(1) class {1&2} vs. {3 &

4}; (2) {1 vs. 2} vs. {3}; (3) {1} vs. {3}; (4) {1} vs. {3 & 4}dand

experimented with 3 data set designsda manually selected

data set of good-quality images (denoted MS) and a set of

automatically selected44 good-quality images, onewhere each

class of AREDS category was as large as possible (denoted

maximum number of images per class) and another where

AREDS categories were kept equal (denoted equal number of

images). They reported the highest accuracy for category 1

from MS images of 98.9% accuracy. For images automatically

selected, the highest accuracies were 96.1% (category 2 equal

number of images), 97.1% (category 3 equal number of im-

ages), and 97.1% (category 4 maximum number of images per

class) (Table 3).

Grivensen and coworkers20 segmented drusen so that their

location, area, and size could be quantified. The overall aim

was to distinguish images of low-risk ARMD from high-risk

ARMD. Two observers manually segmented 52 images to

provide a reference set for evaluation of automated drusen

quantification (set A) and graded 355 images to evaluate

automated ARMD severity classification (set B). Candidate

drusen extraction was achieved by convolving the green

channel of the color fundus photographs with Gaussian filters

and using their derivatives to train a classifier. The classifier

used regression to determine the class of the data point and

the pixels filter response, called K-nearest neighbors. The

classifier can be used to assign a probability using the filter

response of a previously unseen pixel that it belongs to a

lesion. Therefore, neighboring pixels with high probabilities

can be grouped into candidate drusen. At this stage, the au-

thors segmented the optic nerve and blood vessels so that any

candidate drusen overlapping these anatomical landmarks

could be excluded. This produced a probability map of the

image where a search-based optimization method (i.e., dy-

namic programming) was then used to solve the candidate

borders. Subsequently, total drusen area and maximum dru-

sen diameter were quantified and compared with measure-

ments derived from the observers’ manual annotations using

intraclass correlation coefficients. Linear discriminant anal-

ysis was used to separate candidate drusen from true drusen

by extracting over 100 features in different color space (Luv,

Hue Saturation Intensity), intensity (red, green, blue con-

trasts), contextual (average, standard deviations of pixel

probability inside/outside border), and shape (area, perimeter)

information. Each image probability map was then binned

according to candidate drusen size and used to train a random

forest classifier. This builds a decision treewhereby the output

is whether the image is from a low- or high-risk patient. The

authors validated algorithm according to measurement

agreeability between algorithm and two graders using intra-

class correlation coefficient. They report intraclass correlation

coefficients of drusen area and diameter measurements of

0.69 and highest area under curve of 0.954 of correct ARMD

image classification (Table 3).

3.4.3. Wet/dry/no disease
Using entropy measures as features from wavelet coefficients

and from green channel CLACHE-enhanced images, detection
of dry ARMD using SVM, Naı̈ve Bayes, probabilistic neural

networks, k-nearest neighbors, and decision trees was pro-

posed by Mookiah and coworkers.42,43 This system was

trained and tested separately on three data sets (automatic

retinal image analysis, STARE, and a private data set). The best

performance was reported for an SVM classifier where Gabor,

local pixel intensity changes, and entropy features ranked

best. The highest performances were observed in automatic

retinal image analysis and STARE, with an accuracy of

correctly classifying between dry ARMD and normal of 95.7%

and 95%, respectively.43 Statistical moments, energy, entropy,

and Gini index features extracted from discrete wavelet

transform (a well-known image denoising technique) also

presented the best accuracy for SVM (93.70%).41 This system

did not require prior segmentation of retinal landmarks and

drusen, and the use ofmultiple classifiers provided a degree of

discrimination ability of the extracted features (Table 4).

SVM was also reported to be the best performing classifier

for pyramid histogram of gradients features extracted by the

particle swarm optimization algorithm, used to detect wet

ARMD and dry ARMD.1 In a private data set, 945 images were

used for training and testing where the algorithm correctly

identified the wet from dry from normal images with 85.12%

accuracy. The number ofwet ARMD images in the data setwas

imbalanced (21 dry to 1wet). To compensate for this, synthetic

samples was generated by oversampling of theminority class.

This produced synthetic features to simulate pathology and

balance the data set. This system did not require any retinal

landmark or drusen segmentation steps (Table 4).

3.5. Deep learning

DL is a rapidly growing field where conventional ML feature

extraction, training, and classifiers are replaced with multi-

layer neural networks capable of learning latent patterns in

the data.37 Neural network architecture (i.e., the layers) are

carefully designed and assembled for the task the network is

to perform. Convolution, pooling, and fully connected layers

are the basic building blocks for the most well-known class of

neural networks, called convolutional neural networks. Con-

volutional neural networks are considered deep convolutional

neural networks (DCNNs) when their architecture typically

contains 10 ormore convolutional layers. DCNNs require large

amounts of often labeled data to train, that may not be

available, especially in a health care setting. Various methods

exist to increase data set size to use state-of-the-art DL

techniques.

Tan and coworkers55 developed a 14-layer DCNN to classify

images as disease/no disease and trained and tested on 1110

images (708 no disease and 402 disease). To increase the size

of the data set, data augmentation was used. Images were

flipped left, flipped down, and flipped left and downward to

increase artificially the size of the data set. This produced four

instances of each image used to train and test the DCNN. They

validated the DCNN using 10-fold cross-validation reporting

an average fold accuracy, sensitivity, and specificity of 95.45%,

96.43%, and 93.75%, respectively.

Pretrained networks also offer a solution when there are

little data whereby networks already trained to solve a similar

task can be reused (transfer learning). ImageNet is a large

https://doi.org/10.1016/j.survophthal.2019.02.003
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general (nonmedical) benchmark data set popularly used to

develop DCNNs. Early layers of a DCNN learn lower level

features such as edges and colors. The following layers learn

higher level features and more image domain-specific fea-

tures to classify the image. Transfer learning is based on the

idea that these lower level features may generalize to images

different from the training images. For instance, OverFeat is a

pretrained network to detect and localize everyday objects

within a nonmedical image.51 Burlina and coworkers8

assessed the efficacy of the pretrained DCNN in classifica-

tion of ARMD using OverFeat. With the input of 5600 color

fundus photographs fromNational Institutes of Health AREDS

into the OverFeat network to classify against pairs of AREDS

categories5 {1 & 2} vs. {3 & 4}; {1 & 2} vs. {3}; {1} and {1} vs. {3 & 4},

they reported a preliminary performance of 92% to 95% ac-

curacy. The same experiment was performed in their later

work9 to assess the use of these features to fine-tune an SVM

classifier and compared the algorithms AREDS grades to a

human grader. An input of 5664 images into the pretrained

Overfeat network was used to obtain a feature vector. These

features were then passed to an SVM classifier to classify

ARMD images as before. They reported a similar performance

between class 1 and class 4 and grader with less agreeability

between class 2 and class 3, algorithm versus grader.

Ensemble learning is a method in which multiple models

are combined into one predictive model. Grassman and co-

workers19 trained six DCNNs from the ImageNet competition,

independently,11,23,36,46,53,54 to predict ARMD severity. Classes

were defined as AREDS category (9 classes), late ARMD stages

(3 classes), and ungradable image (1 class). The results from

each DCNN were then used to train a random forest classifier

to build a model ensemble. They trained and tested each

DCNN and the ensemble on 120,656 color fundus photographs

(86,770 training and 21,867 testing). Each individual DCNN

achieved accuracies between 57.7% and 61.7%. By combining

the DCNNs into an ensemble, the overall accuracy was

increased to 92.1% for predicting each ARMD class. Grassman

and coworkers19 also used an independent data set of 55556 to

evaluate their algorithm and achieved an accuracy of 34%.

Misclassifications were color fundus photographs from

healthy individuals incorrectly classified as neovascular

ARMD. This was due to younger eyes in the KORA data set

(<40 years old) demonstrating dominant macular reflexes,

whichwas not observed in the training data (>55 years old). By

restricting the analysis to fundus images of the eyes of in-

dividuals aged 55 years and older, they increased the perfor-

mance to 50% accuracy for predicting ARMD severity

according to their defined ARMD classes. When the algorithm

was used to classify early or late ARMD, accuracy was

improved to 84.2% and correctly classified 94.3% of healthy

fundus images.
4. Discussion

Our search highlighted ML as the predominant technique for

ARMD detection and classification, with most recent articles

reporting DL techniques. The primary aim of drusen-related

automated image analysis is to support decision-making in

the clinic. Rather than detecting individual drusen, image-
level classification was more common with the aim of

computerizing ARMD screening and grading systems. Only a

single article reported discrete drusen measurement and

quantification.20 Manually outlining individual drusen to

provide ground truth for algorithm training is very labor

intensive and motivates the shortage of ML approaches to

individual drusen segmentation. AREDS categories,5 class 1

and class 2 ARMD, are the most difficult to separate because

grading relies on drusen counts and measurements that

cannot be obtained automatically without the reference data.

ML is particularly susceptible to this paradox because they are

driven by examples that are assumed to be representative of

the population. A newly obtained image may not be similar to

any of the examples used to train the model, and therefore, it

may fail to classify it. This effect of data variability was also

observed in the study by Grassman and coworkers19 when the

model was evaluated on an independent data set containing

color fundus photographs with retinopathies not present in

the training set and removal improved performance. This

raises questions as to how ML would generalize to the clinic.

In terms of translating into the clinic, systems depending

on segmentation of retinal landmarks16,20,25 would need reli-

able and robust detection and segmentation algorithms. Al-

gorithms would also need to be robust to image quality.

Comparably, Kankanaballi and coworkers31 and Phan and

coworkers47 both used a visual words algorithm, but Kanka-

naballi et al47 included poor-quality images and achieved

lower overall accuracies than Phan and coworkers who used a

larger data set. In the study by Phan and coworkers,47 the al-

gorithm is tested on data setswith a varying balance of images

labeled in the ARED’s categories, where highest accuracies are

achieved for the more balanced data sets or category contains

clear and expected differences between ARMD severities

(class 1 vs. class {3 & 4}). This exemplifies how a classifier can

be fine-tuned and stabilized by data set balance and image

quality alone. In addition, Burlina et al7 used the only algo-

rithm that explicitly states validation on African and Asian

eyes, where because of high melanin content, images appear

darker. This highlights that an algorithm for use in the clinic

would also need to be robust to ethnicity.

Interestingly, the single article proposing a dry/wet clas-

sifier yielded good results1 even with synthetic data. Wet

ARMD occurs when neovascularization occurs, with subse-

quent intraretinal fluid causing central vision loss. In the

clinic, it is now standard practice to use cross-sectional optical

coherence tomography for obtaining insight into intraretinal

fluid levels. Presentation of wet ARMD involves a wide spec-

trum of changes in the retina from normal-looking retina to

distorted bloody retina. This is a difficult classifier to train and

may indicate why there is only a single report of an algorithm

using ML to detect dry from wet ARMD. As DL is becoming a

state-of-the-art technique for difficult classification problems,

future studies using DL for classifying wet ARMD could yield

better results. This would be valuable in the clinic becausewet

ARMD requires urgent care.

There is also a clear importance to assess algorithm per-

formance against the expert grader if such systems are to be

deployed in a clinical setting. The methods were evaluated on

different data sets, which makes levels of performance diffi-

cult to compare between algorithms including, for example,

https://doi.org/10.1016/j.survophthal.2019.02.003
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variants in preprocessing, feature selection, and classification.

Methods of preprocessing largely depend on the features that

need to be enhanced, and the green channel is the most

commonly reported input for drusen detection. Texture and

color features are predominantly used for ARMD grading,

which is reasonable considering that color distributions and

texture in a diseased image may differ dramatically from

those in a normal eye.

ML requires feature design and selection that increase in

complexity as the data increase in variability. DL networks

exploit underlying patterns that perform well when data

complexity and variation increase. Given the variable nature

of the human retina, such systems appear more promising

for adoption in the clinic. As drusen edges are hard to

define, DL may be able to learn subtle patterns within the

data to aid in quantifying areas of drusen for detecting

disease progression. DL algorithms are producing state-of-

the-art results but come at a computational cost. Large

amounts of data are required to train the data set, which

still requires (some) validation from ground truth. Further

development of such algorithms represents a growing and

expanding interdisciplinary field for automatic disease

detection.

The results of our search identified a number of articles

reporting algorithms for detection of DR and glaucoma where

drusen can also be present. Fundus imaging has also been

used to derive biomarkers for systemic conditions, such as

hypertension and diabetes.40 Recently, there are an increased

number of reports linking ARMD to Alzheimer disease (AD).

AD is diagnosed using medical history, psychiatric examina-

tion, brain imaging, and biomarkers in cerebrospinal fluid.

Definitive classification requires neuropathological changes

as seen on postmortem examination. Characteristic retinal

changes have previously been identified in AD, such as a

sparser retinal vascular network (inferring altered cerebral

vasculature)41 and thinning of the retinal nerve fiber layer56 (a

marker of axonal loss). A key component of AD-related de-

posits in the brain, amyloid b, is also found in drusen. Amyloid

b is an aggregate-prone peptide family that aggressively tar-

gets neurons,4 and there are an increasing number of reports

of amyloid plaques in the retina in patients with AD.29,35,39,59

As the retina is anatomically, embryologically, and physio-

logically linked to the central nervous system, it is perhaps not

surprising that these depositions may have implications to

neurodegenerative disease of the brain. Indeed, the progres-

sion of drusen formation in the peripheral retina has been

found to be more prevalent in patients with AD than in the

age-matched control.13 These findings were in a small cohort

but suggest a promising biomarker for disease-related plaque

formation in the brain.

When ARMD progresses asymmetrically, patients risk

remaining asymptomatic due to maintaining good visual

acuity in their healthy eye. The resulting delay in presentation

and treatment impacts visual prognosis.

For automated drusen assessment to be applied in the

clinic, it must go beyond cross-sectional phenotyping and

instead relate to real patient visual outcomes. Longitudinal

studies will be required to determine if automated image

grading, based on drusen detection, can accurately predict

disease progression.
Future algorithms involving drusen detection should aim

to provide useful quantification to aid screening for ARMD. A

screening program should stratify patients according to

optimal follow-up pathway. For automated drusen detection

to contribute to the cost-effectiveness of a screening program

for ARMD, it must separate individuals with drusen associated

with normal aging from patients whose drusen load pro-

gresses and stratify patients withmild ARMD into those at low

risk and at high risk of progression to severe ARMD. This

would enable the ophthalmologist to select relevant patients

for regular follow-up, thus improving the efficiency of patient

care.
4.1. Method of literature search

Published studies were identified through systematic

searches of EMBASE, PubMed, Web of Knowledge, Science

Direct, ACM Digital Library, and IEEE Xplore. The search terms

in the first instance included “drusen” and in combinationwith

“detection” or “classification” or “identification” or “segmentation”

or “quantification” or “measurement” or “algorithm”. Further

filtering was conducted on the titles and abstracts based on

whether they contain the phrase “age-related macular degener-

ation” or the abbreviation “ARMD”.
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