
Phenoflow

Clinical Natural Language Processing Group, University of Edinburgh

Martin Chapman, Research Fellow in Phenomics (GSTT BRC and HDR UK)

King’s College London

Overview

Background

Phenotype models

Phenotype tooling

Applications

The future

1

Background

Definition: EHR-based phenotype definition i

An electronic health record (EHR)-based phenotype definition is an abstract specification

that details how to extract a cohort of patients from a set of health records who all exhibit the

same disease or condition.

2

Definition: EHR-based phenotype definition ii

Table 1: Phenotype definition formats

Format Description Example Category

Code list A set of codes that must exist in a pa-

tient’s health record in order to include

them within a phenotype cohort

COVID-19 ICD-10 code U07.1 Rule-based

Simple data ele-

ments

Formalising the relationship between

code-based data elements using logical

connectives

COVID-19 ICD-10 code U07.1

AND ICD-11 code RA01.0

Rule-based

Complex data ele-

ments

Formalising the relationship between

complex data elements, such as those de-

rived via NLP.

Patient’s blood pressure reading >

140 OR patient notes contain ‘high

BP’

Rule-based

Temporal Prefix rules with temporal qualifiers Albumin levels increased by 25%

over 6 hours, high blood pressure

reading has to occur during hospi-

talisation.

Rule-based

Trained classifier Use rule-based definitions as the basis for

constructing a classifier for future (or ad-

ditional) cohorts

A k-fold cross validated classifier

capable of identifying COVID-19

patients

Probabilistic

3

Definition: Computable phenotype i

Each definition is realised as one or more computable phenotypes for a given dataset (e.g. an

SQL script, Python code, etc.).

4

Definition: Computable phenotype ii

A Type 2 Diabetes (T2DM) phenotype:

SELECT UserID, COUNT(DISTINCT AbnormalLab) AS abnormal lab

FROM Patients

GROUP BY UserID

HAVING abnormal lab > 0;

...

Definition Computable forms

5

Phenotype definition landscape i

portal.caliberresearch.org phekb.org

Computable form often omitted – this makes it unclear how to implementation and execute

a definition in practice against a dataset, particularly for non-technical users.

(We’ll revisit CALIBER’s implementation tab shortly.)

6

portal.caliberresearch.org
phekb.org

Phenotype definition landscape ii

Conversely, if included, the definition and computable form are often conflated as a single

executable - an R script on Github is not suitably abstract to be a phenotype definition itself.

Chapman, Martin, et al. ”Desiderata for the development of next-generation electronic health

record phenotype libraries.” GigaScience, 2021.

7

Phenotype definition landscape iii

Otherwise simple definitions are often made complex by idiosyncratic terminology and a

convoluted structure.

8

Phenotype definition landscape iv

https://data.ohdsi.org/PhenotypeLibrary

Tied to a single standard, e.g. OHDSI’s gold standard phenotype library and the OMOP

CDM.

9

https://data.ohdsi.org/PhenotypeLibrary

Why are these things a problem?

We want to be able to reuse definitions as much as possible, to enable cohorts of patients with

a given condition to be identified as efficiently and consistently as possible, within the same

domain (e.g. research, clinical trials, decision-support).

• We are not looking for a single, canonical version of each definition across domains – it is

perfectly possible for there to be multiple definitions for the same condition depending

on use case.

The current landscape is not always conducive to reuse:

• The lack of a computable form, or guidance on how to derive one, reduces definition

portability (the ease with which a definition can be implemented).

• A convoluted structure reduces definition reproducibility (the accuracy with which a

definition can be implemented).

10

Why are these things a problem?

We want to be able to reuse definitions as much as possible, to enable cohorts of patients with

a given condition to be identified as efficiently and consistently as possible, within the same

domain (e.g. research, clinical trials, decision-support).

• We are not looking for a single, canonical version of each definition across domains – it is

perfectly possible for there to be multiple definitions for the same condition depending

on use case.

The current landscape is not always conducive to reuse:

• The lack of a computable form, or guidance on how to derive one, reduces definition

portability (the ease with which a definition can be implemented).

• A convoluted structure reduces definition reproducibility (the accuracy with which a

definition can be implemented).

10

Phenotype models

Phenotype models i

Phenotype models govern the information required for, and the structure of, phenotype

definitions.

• They may, for example, govern the logical connectives available to a definition author

when producing a definition (e.g. conjunction and disjunction).

• Many definitions have an inherent model, such as the fields that are required when the

definitions is stored in a phenotype library.

• Models may also be derived from existing (non-executable) modelling languages, such as

the Clinical Quality Language (CQL).

11

Phenotype models ii

l i b r a r y ”PhEMA Heart F a i l u r e ” v e r s i o n ’ 1 . 0 . 0 ’

u s i n g QUICK

codesystem ” ActCodes ” : ’ h t t p : / / h l 7 . org / f h i r / v3 /ActCode ’

v a l u e s e t ”Echo VS ” : ’ 2 . 1 6 . 8 4 0 . . . ’

v a l u e s e t ”HF Dx VS ” : ’ 2 . 1 6 . 8 4 0 . . . ’

code ” I n p a t i e n t Encounter ” : ’ IMP ’ from ” ActCodes ”

code ” O u t p a t i e n t Encounter ” : ’AMB’ from ” ActCodes ”

12

Phenotype model requirements

While a standard structure goes some way towards improving definition clarity, the use of an

explicit phenotype model can help address many of the issues we’ve seen, but to be

effective, a model must fulfil certain requirements:

1. Needs to connect, yet keep distinct, a phenotype definition and its computable form.

1.1 A definition needs to remain suitably abstract while making provision for an associated

computable counterpart. Ideally facilitate one-to-many connectivity, connecting with

multiple implementations of the same logic.

2. Needs to prioritise clarity to combat the complexity of definitions.

3. Support a variety of target data formats.

4. Accommodate (and potentially combine) all definitions types.

13

Phenotype model requirements

While a standard structure goes some way towards improving definition clarity, the use of an

explicit phenotype model can help address many of the issues we’ve seen, but to be

effective, a model must fulfil certain requirements:

1. Needs to connect, yet keep distinct, a phenotype definition and its computable form.

1.1 A definition needs to remain suitably abstract while making provision for an associated

computable counterpart. Ideally facilitate one-to-many connectivity, connecting with

multiple implementations of the same logic.

2. Needs to prioritise clarity to combat the complexity of definitions.

3. Support a variety of target data formats.

4. Accommodate (and potentially combine) all definitions types.

13

Phenotype model requirements

While a standard structure goes some way towards improving definition clarity, the use of an

explicit phenotype model can help address many of the issues we’ve seen, but to be

effective, a model must fulfil certain requirements:

1. Needs to connect, yet keep distinct, a phenotype definition and its computable form.

1.1 A definition needs to remain suitably abstract while making provision for an associated

computable counterpart. Ideally facilitate one-to-many connectivity, connecting with

multiple implementations of the same logic.

2. Needs to prioritise clarity to combat the complexity of definitions.

3. Support a variety of target data formats.

4. Accommodate (and potentially combine) all definitions types.

13

Phenotype model requirements

While a standard structure goes some way towards improving definition clarity, the use of an

explicit phenotype model can help address many of the issues we’ve seen, but to be

effective, a model must fulfil certain requirements:

1. Needs to connect, yet keep distinct, a phenotype definition and its computable form.

1.1 A definition needs to remain suitably abstract while making provision for an associated

computable counterpart. Ideally facilitate one-to-many connectivity, connecting with

multiple implementations of the same logic.

2. Needs to prioritise clarity to combat the complexity of definitions.

3. Support a variety of target data formats.

4. Accommodate (and potentially combine) all definitions types.

13

Phenotype model requirements

While a standard structure goes some way towards improving definition clarity, the use of an

explicit phenotype model can help address many of the issues we’ve seen, but to be

effective, a model must fulfil certain requirements:

1. Needs to connect, yet keep distinct, a phenotype definition and its computable form.

1.1 A definition needs to remain suitably abstract while making provision for an associated

computable counterpart. Ideally facilitate one-to-many connectivity, connecting with

multiple implementations of the same logic.

2. Needs to prioritise clarity to combat the complexity of definitions.

3. Support a variety of target data formats.

4. Accommodate (and potentially combine) all definitions types.

13

Phenoflow workflow-based model i

Phenoflow workflow-based phenotypes are a step of sequential steps, which effectively

transition a population of patients to a cohort that exhibit the condition captured.

14

Phenoflow workflow-based model ii

Each step in the model consists of three layers:

• Abstract Expresses the logic of that step. Says nothing about implementation.

• Functional Specifies the inputs to, and outputs from, this step (metadata) e.g., the

format of an intermediate cohort.

• Computational Defines an environment for the execution of one or more

implementation units (e.g. a script, data pipeline module, etc.).

15

Phenoflow workflow-based model iii

number group id description type

step

Input Output

id description id description extensionA

pathA languageA paramsA

implementationUnitA

Computational

Implementation

Units

pathB languageB paramsB

implementationUnitB

Abstract

Functional

Figure 1: Structured phenotype definition model (step) and implementation units.

16

(1) Separate, yet connect, a phenotype definition with its computable form

The separation of the model into logic and implementation layers provides the required

connectivity with a computable form, without affecting abstraction:

2 - icd10 A case is identified in the presence of pa-

tients associated with the stated icd10

COVID-19 codes.

logic

step

Input Output

covid19 cohort Potential covid19

cases.

covid19 cases icd10 covid19 cases, as

identified by icd10

coding.

csv

icd10.py python -

f o r row i n c s v r e a d e r :

newRow = row . copy ()

f o r c e l l i n row :

i f [v a l u e f o r v a l u e i n

row [c e l l] . s p l i t (” , ”)

i f v a l u e i n codes] :

newRow [” c o v i d 1 9 ”] = ”CASE”

...

Computational

Implementation

Units

icd10.js javascript -

f o r (row o f csvData){
newRow = row . s l i c e () ;

f o r (c e l l o f row){
i f (c e l l . s p l i t (” , ”)

. f i l t e r (code=>codes .

i n d e x O f (code)>−1). l e n g t h){
newRow . push (”CASE”) ;

...

Abstract

Functional

Figure 2: Individual step of COVID-19 code-based Phenoflow definition and implementation units.
17

(2) Prioritise clarity to combat the complexity of definitions

On top of definitions now having an expected structure, separation into steps provides a logical

flow.

Each step provides three descriptions of the functionality it contains, to aid clarity:

1. A single ID, providing an overview of the step’s functionality.

2. A longer description of the functionality contained within the step.

3. A classification of the step under a pre-defined ontology, so that even if the ID and

description are not sufficient, a general understanding of the functionality of the step can

still be extracted1.

Inputs and outputs to each step provide further information.

1As of now we still use simple classification, e.g. logic, but finer a granularity of types is forthcoming.

18

(3) Support a variety of target data formats

We add additional contraints to the workflow-based structure to dictate that the first step in a

definition is always a data read (and the last is always a cohort output).

Because of the modularity of the model structure, we are able to swap in and out the logic,

and associated implementation, of the data read step – while the other steps remain

unchanged – in order to accommodate multiple data formats.

More on this connector approach shortly.

19

(4) Accommodate (and potentially combine) all definitions types i

The generality of the model allows it to capture information relating to a wide range of

different definition types.

Similarly, the separation of logic into steps, with clear inputs and outputs, makes each step

self-contained, allowing types to be mixed within a single definition.

• One step may identify patients based on a list of codes, while a subsequent step may

describe the use of more complex NLP techniques in order to identify patients.

20

(4) Accommodate (and potentially combine) all definitions types ii

1 case assignment rx t2dm med-

abnormal lab

A case is identified in the presence of

an abnormal lab value (defined as one

of three different exacerbations in blood

sugar level) AND if medication for this

type of diabetes has been prescribed.

boolean

step

Input Output

dm cohort-

abnormal lab

Potential t2dm

cases, with ab-

normal lab results

identified

dm cases-

case assignment 1

t2dm cases, as iden-

tified by first case as-

signment rule

csv

rx t2dm med-abnormal lab.knwf knime -File= Computational

Implementation

Units

rx t2dm med-abnormal lab.py python -

...

i f row [” t1dm dx cnt ”] == ”0”

and row [” t2dm dx cnt ”] == ”0”

and ” t 2 d m r x d t s ” i n c s v r e a d e r . f i e l d n a m e s

and ” a b n o r m a l l a b ” i n c s v r e a d e r . f i e l d n a m e s

and row [” a b n o r m a l l a b ”] == ”1” :

row [”t2dm”] = ”CASE” ;

...

Abstract

Functional

Figure 3: Individual step of T2DM logic-based Phenoflow definition and implementation units.

21

Phenotype tooling

Phenoflow web architecture

The Phenoflow model is complemented by a web architecture that accentuates its benefits.

Chapman, Martin, et al. “Phenoflow: A microservice architecture for portable workflow-based

phenotype definitions.” AMIA, 2021. 22

Phenoflow web architecture

The Phenoflow model is complemented by a web architecture that accentuates its benefits.

Web

Portal

Generator

Visualiser

Implementation

Units

Author(s)

User

customise

author,

expand

data

workflow

visualisation

workflowworkflow,

visualisation,

implementation units

Chapman, Martin, et al. “Phenoflow: A microservice architecture for portable workflow-based

phenotype definitions.” AMIA, 2021. 22

Aside: Microservice architectures

We separate any system into individual services

to ensure scalability (service replication), re-

silience (service indepedence), technology het-

erogeneity (allowing different people to use

their favourite languages), composability (en-

abling reuse) and ease of deployment.

23

Authoring i

1. Author a new definition under the model.

1.1 Represent an existing definition in a standard way.

24

Authoring ii

2. Upload implementation units for each step in the model.

2.1 The now modular nature of the definition provides a template for development.

2.2 Alternatively, allows existing implementations developed by users to be reused in a standard

context.

3. Users can upload one or more implementations for each step in their own definitions, or

the definitions created by others.

25

Execution i

1. Export as CWL workflows.

26

Execution ii

1.1 Can be edited by technical users who, if there are multiple uploads for each step, can

configure how each step is implemented prior to download, in order to provide them with

familiar languages with which to work.

27

Execution iii

1.2 Can simply be executed out of the box by non-technical users2

2Currently requires the command line, a GUI executor is forthcoming!

28

Execution iv

2. Pick a connector to be the first step in the workflow, depending on the format of the

dataset you are targeting.

2.1 Credentials for data stores are entered locally.

29

Execution v

30

Applications

Initial evaluation

First showed portability improvements in terms of clinical knowledge requirements and

programming expertise using the Knowledge conversion, clause Interpretation, and

Programming (KIP) phenotype portability scoring system (Shang et al., JBI, 2019.)

Knowledge Clause Programming Total

Traditional Code 0 2 2 4

Phenoflow Code 0 0 0 0

Traditional Logic 1 1 2 4

Phenoflow Logic 0 1 0 1

Table 2: KIP scores indicating the portability of traditional code-based (COVID-19) and logic-based

(Type 2 Diabetes) phenotype definitions and their Phenoflow counterparts.

31

Clinical trials i

Recruitment in the REST clinical trial (AOMd) was handled using the TRANSFoRm e-source

trial platform.

In the original trial, archetype-based criteria were translated to concrete implementations

(e.g. XPath queries) by TRANSFoRm in order to determine a patient’s eligibility from their

EHR.

32

Clinical trials ii

We developed a new service (PhEM) that instead enables the execution of a computable

phenotype against an EHR in order to identify eligible patients at the point-of-care.

EHR
integration

Archetype
execution

Data Node ConnectorGP

Patient
record

Study system

Archetype
translation

Phenotype
execution

microservice
(PhEM)

The use of PhEM was shown to increase recruitment accuracy.

Chapman, Martin, et al. “Using Computable Phenotypes in Point-of-Care Clinical Trial

Recruitment”. MIE, 2021.

33

Provenance

A reverse application: connected Phenoflow with the Data Provenance Template server, a

piece of software that holds structured fragments of provenance.

These fragments record the evolution

of the data (definitions) within Phe-

noflow, as they are edited by users,

improving validity, intelligibility and

reproducibility:

used used wasAssociatedWith

wasGeneratedBy

var:updated
prov:end vvar:time

prov:type phenoflow#Updated
zone:id update

var:author

prov:type phenoflow#Author

var:phenotypeAfter
phenoflow:description vvar:description

phenoflow:name vvar:name
prov:type phenoflow#Phenotype

var:phenotypeBefore

prov:type phenoflow#Phenotype

var:step

phenoflow:coding vvar:coding
phenoflow:doc vvar:doc

phenoflow:position vvar:position
phenoflow:stepName vvar:stepName

phenoflow:type vvar:type
prov:type phenoflow#Step

zone:id update

Fairweather, Elliot, et al. “A delayed instantiation approach to template-driven provenance for

electronic health record phenotyping”. IPAW, 2020.
34

The future

Authoring vs. parsing

“A model is only useful if it’s used”.

A challenging task to expect the adoption of a single model.

Alternative approach: parse the definitions developed by others (e.g. those represented in

other libraries), represent them within Phenflow, and then provide them for use.

35

Parsing

Grab data relating to a definition (codelist, drug list, keywords, more complex logic).

Determine where key information is within this

data (e.g. a ‘conceptid’ column in a codelist CSV).

Populate the information required for the Phenoflow model au-

tomatically (e.g. step structure – easier for something like a

codelist; may require some intervention with more complex logic).

Automatically generate implementation units for each step.

Add these to the Phenoflow library ready for download.

36

Parsing example – HDR UK national phenomics resource i

Have imported, standardised and provided implementations for ∼300 existing definitions as

a part of the HDR phenomics resource:

Phenoflow

Concept Library

(Web Interface +

API access)
CALIBER

Gateway

User

Bulk import API access

Workflow link Workflow link

Dataset link

Phenotype link

Dataset link

Phenotype Link

(API access)

Library

Platform

37

Parsing example – HDR UK national phenomics resource ii

These are now directly linked to from CALIBER, and from the soon to be release HDR UK

Phenotype Portal:

38

Parsing example - KCLHI NLP Phenotypes

The Health Informatics group at King’s have derived a set of inclusion (and exclusion – yet to

be modelled) keywords for a range of conditions.

Steps of model, and other required information, generated based on this data.

Example implementation provided and used as part of parsing process to generate

implementation units.

39

Other future work i

• Always interested in parsing definitions from new sources.

• Publish more implementations for complex disease-specific phenotypes, e.g. long covid

(LOCOMOTION; phenotypes from NW London GP records) and stroke (KCL NIHR;

phenotypes from SLSR).

• Increase the library of workflow modules (e.g. types of dataset connectors) ready for

download and use.

• Automatic data conversion to enable use of different implementation techniques on same

dataset, e.g. conversion from CSV to DB to allow use of SQL scripts.

40

Thank you!

Welcome to visit Phenoflow itself: http://kclhi.org/phenoflow.

View the architecture on Github: https://github.com/kclhi/phenoflow.

Publications mentioned: https://martinchapman.co.uk/publications/pheno.

Contact: @martin chap man.

41

http://kclhi.org/phenoflow
https://github.com/kclhi/phenoflow
https://martinchapman.co.uk/publications/pheno

	Background
	Phenotype models
	Phenotype tooling
	Applications
	The future

	0.Plus:
	0.Reset:
	0.Minus:
	0.EndRight:
	0.StepRight:
	0.PlayPauseRight:
	0.PlayRight:
	0.PauseRight:
	0.PlayPauseLeft:
	0.PlayLeft:
	0.PauseLeft:
	0.StepLeft:
	0.EndLeft:
	anm0:
	0.21:
	0.20:
	0.19:
	0.18:
	0.17:
	0.16:
	0.15:
	0.14:
	0.13:
	0.12:
	0.11:
	0.10:
	0.9:
	0.8:
	0.7:
	0.6:
	0.5:
	0.4:
	0.3:
	0.2:
	0.1:
	0.0:

