Competitive Firms and Markets

Lecture 6
Reading: Perloff Chapter 8

August 2017

Introduction

- We learned last lecture what input combination a firm will use for a given level of output.
- But exactly how much should a firm produce?
- Depends on their cost structure, what other firms will do and how consumers behave.

Introduction

- In this lecture, we see how the supply curve we saw on the first day is derived.
- We look in more detail how the equilibrium quantity and price is determined in a perfectly competitive market.

Outline

- Perfect Competition - A perfectly competitive firm is a price taker and faces a horizontal demand curve.
- Profit Maximization - How much should a firm produce to maximize profits?
- Competition in the Short Run - What is the market equilibrium when the number of firms in the market is fixed?
- Competition in the Long Run - What is the market equilibrium when firms are free to enter and exit?

Perfect Competition

- One of the simplest market structures is perfect competition.
- A market is perfectly competitive if each firm in the market is a price taker.
- A firm is a price taker if it cannot alter the market price or the price at which they buy inputs.
- Everything the firm needs to know is captured by the market price.

Perfect Competition

- Firms are likely to be price takers if the market has some or all of the properties
- Huge number of firms
- Homogenous products
- Everybody knows everything
- Low transaction costs
- Free entry and exit
- Obviously these conditions are never fully met, but many markets are highly competitive.

Perfect Competition

Large Number of Buyers and Sellers

- If there are enough sellers, no firm can raise or lower the market price.
- An individual firm is a tiny percent of the entire market.
- The firm's demand curve is a horizontal line at the market price.

Perfect Competition

Identical Products

- Firms sell homogenous products.
- A good produced by firm A is perfectly substitutable with a good produced by firm B.
- A firm cannot sell anything if it raises its price by 1 P more than its competitors.
- An example of this would be Granny Smith apples or plain white t-shirts.

Perfect Competition

Full Information

- Buyers know the prices set by all firms.
- Firms cannot get away with raising their price because consumers know the prices of all firms.

Perfect Competition

Negligible Transaction Costs

- Buyers and sellers don't have to spend much time or money to interact with each other.
- If this were not the case, buyers might absorb a higher price charged by firms who have a lower transaction cost.
- Think of all firms as being in the same room.

Perfect Competition

Free Entry and Exit

- If all firms raise their prices and there is profit to be made, firms will keep entering until the price is driven back down.
- If there were no free exit, firms might be hesitant to enter the market in case of a bad shock.

Perfect Competition

- Many markets do not posses all these features, but are for practical purposes still price takers.
- In these markets, firms do not deviate significantly from price taking.
- We still call these markets competitive in practice.

Perfect Competition

- The most important thing to take away from all this is that a perfectly competitive firm faces a horizontal demand curve.
- Lets see how this can occur.

Perfect Competition

- An individual firm faces a residual demand curve.
- This is the market demand not met by other sellers.
- It is equal to the market demand minus the supply of all other firms.

$$
D^{r}(p)=D(p)-S^{o}(p)
$$

- For example, buyers want to purchase 10,000 bananas and all the other banana firms sell 9,990 bananas. Residual demand is 10 bananas.

Perfect Competition

Perfect Competition

- Because the residual demand curve is much flatter than the market demand curve, the elasticity of residual demand is much higher than market elasticity
- If there are n identical firms, the elasticity of demand facing firm i is

$$
\varepsilon_{i}=n \varepsilon-(n-1) \eta_{o}
$$

- ε_{i} is the elasticity facing firm $i . \varepsilon$ is the market elasticity and η_{o} is the elasticity of supply of the other firms

Perfect Competition

EXAMPLE

- Suppose the market elasticity of demand is -1.5
- There are 10 firms in the market and the elasticity of supply is 4 .
- What is the elasticity of demand facing firm i?
- What is the interpretation behind this?
- What happens when we increase the number of firms in the market?

Perfect Competition

- As the number of firms in the market increases, we approach a perfectly competitive market.
- As we approach a perfectly competitive market, the demand curve facing a single firm gets flatter and flatter.
- The key point is that an individual firm is insignificant to what happens in the market.

Perfect Competition

- Why do we study perfect competition?
- Many markets are reasonably described as competitive.
- Easy to model.
- Once we understand it, we can easily add imperfections to make it more realistic.

Profit Maximization

- To derive the market supply curve, we must know how much each firm wants to produce.
- We will first look at this in the short-run.
- The firm produces an amount such that its profits are maximized.
- Profit is just the difference between total revenue and total cost $\pi=T R-T C$.
- Total revenue is the number of units you sell times the price of each unit $p * q$.

Profit Maximization

- Cost is a bit less straightforward.
- We always refer to economic costs.
- Economic costs includes opportunity cost, accounting cost do not.
- It might seem like your business is making money, but working somewhere else might be more profitable.

Profit Maximization

- There are two steps a firm must make when finding its profit maximizing level of output.
- The first step is the output decision
- What level of output, q^{*}, maximizes profit?

Profit Maximization

- The next step is the shutdown decision
- Is it more profitable to produce q^{*} or to shut down and produce nothing?

Profit Maximization

- A firm can use any of the following three equivalent rules to choose how much to produce.

RULE 1 Maximize profit function

- Find your profit function and find the maximum.

Profit Maximization

Profit Maximization

RULE 2 Set marginal profit to zero

- Marginal profit is the extra profit you get from selling one more unit.
- When marginal profit is zero, we will lose profit by increasing or decreasing output (must check second order condition).

$$
\frac{d \pi(q)}{d q}=0
$$

Two Steps to Maximizing Profit-Step One

RULE 3 Set marginal revenue to equal to marginal cost

- Marginal revenue is the additional revenue you get from increasing output.
- Marginal cost is the addition cost you incur from increasing output.
- At the optimum, $M C(q)=M R(q)$.

Profit Maximization

- These are all exactly the same thing

$$
\begin{aligned}
\max \pi(q) & =R(q)-C(q) \\
\frac{d \pi(q)}{d q} & =\frac{d R(q)}{d q}-\frac{d C(q)}{d q}=0 \\
\frac{d R(q)}{d q} & =\frac{d C(q)}{d q}
\end{aligned}
$$

Profit Maximization

EXAMPLE

- Suppose the market price is $p=100$.
- Our cost function is

$$
C(q)=20 q+10 q^{2}
$$

- What is the profit maximizing level of output?

Profit Maximization

- After you know what q^{*} is, all we have to know whether or not we should shut down.
- Remember that in the short run, we can have sunk fixed costs.
- If a firm shuts down in the short run, it still has to pay sunk fixed costs.
- A firm might stay in business if it is making a loss if it is covering its sunk fixed costs.

Profit Maximization

- The sunk cost should not play a role in the firm's shut down decision. - The firm only needs to make sure its costs are less than the avoidable costs.

Profit Maximization

- Suppose

$$
\begin{aligned}
\text { Total Revenue } & =5000 \\
\text { Variable Cost } & =2000 \\
\text { Sunk Fixed Cost } & =6000
\end{aligned}
$$

- Should the firm shut down?

Profit Maximization

- We just need to compare the profit from staying in business versus not (π^{O} is profit from staying in business and $\pi^{S D}$ is profit from shutting down).

$$
\begin{aligned}
\pi^{O} & =5000-2000-6000=-3000 \\
\pi^{S D} & =-6000
\end{aligned}
$$

- The firm minimizes its losses by staying in business

Competition in the Short Run

- Okay, we know how much an individual firm decides its production level.
- We can use this information to find out what total market production and the market price is.
- First, we need to find the supply curve of each individual firm.

Competition in the Short Run

- REMEMBER, firms in competitive markets face a horizontal demand curve.
- No matter how much an individual firm sells, the price will not change.
- The price they get from each unit is constant $\Rightarrow R(q)=p * q$.
- The market price is independent of how much an individual firm produces.

Competition in the Short Run

- Because the price is the same no matter how much one firm produces, marginal revenue is simply $M R(q)=\frac{d R(q)}{d q}=p$.
- The profit maximizing level of output occurs where $M R(q)=M C(q)$
- Therefore the profit maximizing level of output occurs where

$$
M C(q)=p
$$

Competition in the Short Run

- The firm's supply curve is the marginal cost curve above the shut-down price.
- That is, the firm sees the market price and decides how much to produce according to its marginal cost curve.

Competition in the Short Run

EXAMPLE

- Suppose the shutdown price for a firm is $p=0$.
- What is the firms supply curve if the cost function is

$$
C(q)=2 q^{2}+q+12
$$

Competition in the Short Run

- How do we find the shut-down price?
- At q^{*}, we can find the firm's average profit as follows

$$
\frac{\pi}{q}=\frac{R}{q}-\frac{C}{q}=\frac{p q}{q}-\frac{C}{q}=p-A C
$$

- For example, If the price is $\$ 10$ and the average cost of producing each unit is $\$ 3$, your average profit is $\$ 7$.

Competition in the Short Run

Competition in the Short Run

- Remember firms in the short run only care about covering their variable costs.
- The firm can only gain from shutting down if its revenue is less than its short-run variable cost $p q<V C(q)$
- Divide both sides by q to show the firm shuts down if the market price is less than the minimum of its short-run average variable cost curve

$$
p<\frac{V C(q)}{q}=A V C
$$

Competition in the Short Run

Competition in the Short Run

- We know that firms will shut down if price is $p<A V C$
- We also know that to maximize profit the firm will produce where $p=M C(q)$
- The firm will shutdown when $M C<A V C$
- This occurs at the minimum of the average variable cost curve
- \Rightarrow The firm's shut down price in the short-run is the minimum of the average variable cost curve.

Competition in the Short Run

- There are two ways we can find the shut-down price in the short-run.
(1) Minimize the $A V C$ function and find the corresponding price.
(2) Find the price where $A V C=M C$

Competition in the Short Run

- The supply curve is just the marginal cost curve above the minimum of the average cost curve

$$
S(p)=\left\{\begin{array}{c}
M C(q) \text { if } p \geq p_{\text {shutdown }} \\
0 \text { if } p<p_{\text {shutdown }}
\end{array}\right.
$$

Competition in the Short Run

Competition in the Short Run

EXAMPLE

- Suppose the firm's cost curve is

$$
C(q)=100+10 q-q^{2}+\frac{1}{3} q^{3}
$$

- What is the firm's marginal cost and average variable cost.
- What is the firm's supply curve?
- What is the shut down price?
- Will the firm produce if $p=10$? if $p=5$?

Competition in the Short Run

- We saw how to get one firm's supply curve
- The market supply curve is the horizontal sum of all the firm's in the markets supply curve
- In the short run, the number of firms is fixed at n

Competition in the Short Run

- Suppose an individual firm has a supply curve

$$
q=10+P
$$

- If there are 10 identical firms, just multiply q by 10 to get the market supply curve

$$
Q=100+10 P
$$

Competition in the Short Run

- The more firms we have, the flatter is the market supply curve

Competition in the Short Run

- If firms differ, the marginal cost curves will not be identical.
- The shut down prices of firms will not be the same either.

Competition in the Short Run

Competition in the Short Run

- By combining the short-run market supply curve and the market demand curve, we can find the short-run equilibrium

Competition in the Short Run

- In summary...
- Each firm will produce the level of output where $M C=p$.
- We add up the individual firm supply curves to get the market supply curve.
- The market price is determined by the intersection of the market supply curve and the market demand curve.

Competition in the Short Run

EXAMPLE

- Each firm has a cost function of

$$
C(q)=10 q^{2}+q+100
$$

- The market demand curve is

$$
D(P)=145-10 P
$$

- When there are 100 firms, what is the equilibrium price?

Competition in the Long Run

- There are two key differences in between the short and long run
(1) There are no sunk fixed costs
(2) The number of firms in the market is not fixed

Competition in the Long Run

- How much will each firm produce in the long-run?
- Once again, firms select the level of output which maximizes their profit.
- The profit maximizing level of output occurs where $p=M C$.

Competition in the Long Run

- After determining the profit maximizing level of output q^{*}, the firm must decide whether or not to shutdown.
- In the long run, all costs are variable.
- Unlike in the short-run, the firm will shut down if it incurs any losses at all.
- The firm will shut down when $p<A C$.
- The shut-down price occurs at the minimum of the average cost curve.

Competition in the Long Run

- There are two ways we can find the shut-down price in the long-run.
(1) Minimize the $A C$ function and find the corresponding price.
(2) Find the price where $A C=M C$

Competition in the Long Run

- Therefore, the supply curve of an individual firm in the long-run is the marginal cost curve above the minimum of the average curve.

$$
S(p)=\left\{\begin{array}{c}
M C(q) \text { if } p \geq p_{\text {shutdown }} \\
0 \text { if } p<p_{\text {shutdown }}
\end{array}\right.
$$

Competition in the Long Run

EXAMPLE

- What is the supply curve for a firm in the long-run with the cost function:

$$
C(q)=40 q-q^{2}+.01 q^{3}
$$

Competition in the Long Run

- The market supply curve is once again the horizontal sum of all firms' supply curves.
- In the short-run, the number of firms is fixed, but firms can enter or leave the market in the long run.

Competition in the Long Run

- If there are profits to be made, firms will enter the market as there are no barriers in perfect competition.
- This will cause the market supply curve to shift and the market price to fall.
- If there is negative profit, firms will exit.
- The number of firms is determined by $\pi=0$.

Competition in the Long Run

- Firms make zero profit when $p=p^{S D}$ where $p^{S D}$ is the shutdown price.
- The shutdown price occurs at the minimum of the average cost curve.
- Therefore, the market price will always occur at the minimum of the average cost curve.

Competition in the Long Run

EXAMPLE

- Draw the market supply and demand curves in one graph next to a graph showing an individual firms's average/marginal cost curves.
- Identify two market prices, p_{1} and p_{2}. At price p_{1}, firms will enter the market and at price p_{2}, firms will exit the market.

Competition in the Long Run

- Suppose all firms have an identical cost curve

$$
C(q)=40 q-q^{2}+.01 q^{3}
$$

- Market demand is

$$
D(P)=25,000-1000 P
$$

Competition in the Long Run

- We have three equilibrium conditions in the long run. P^{*} is the market price and n^{*} is the number of firms.
(1) Profit Maximization

$$
P^{*}=M C \rightarrow P^{*}=40-2 q+.03 q^{2}
$$

(2) Zero Profit

$$
P^{*}=A C \rightarrow P^{*}=40-q+.01 q^{2}
$$

(3) Supply equals demand

$$
n q=25,000-1000 P
$$

Competition in the Long Run

- Combine equation 1 and equation 2 to find how much each firm will produce.

$$
\begin{aligned}
40-2 q+.03 q^{2} & =40-q+.01 q^{2} \\
q & =50
\end{aligned}
$$

- Plug 50 into the average cost curve to find the market price will be \$15.
- Plug 15 into the demand curve to see that 10,000 units will be produced.
- There will be $10,000 / 50=200$ firms in the market.

Competition in the Long Run

- The long run market supply curve is flat at the minimum long run average cost curve iff
- input prices are constant.
- firms have identical costs.

Competition in the Long Run

Competition in the Long Run

- Remember how we said there is no such thing as the law of supply?
- The supply curve can slope upwards or downwards if the previous two conditions are not met.

Competition in the Long Run

- If entry is limited, the market supply curve will slop upward.
- Individual firms have upward sloping supply curves.
- The only way to increase output is for existing firms to produce more.

Competition in the Long Run

- If firms differ in their costs, the market supply curve will also slope upwards.
- Some firms will enter the market at lower prices than others.

Competition in the Long Run

- If the number of coffee shops increases, we could expect the price of coffee beans to increase.
- This will also cause the market supply curve to be upward sloping.
- It is also possible for input prices to decrease with output (economies of scale).
- This will cause the supply curve to be downward sloping.

Summary

- What are the conditions under which firms are price takers?
- What is the residual demand curve?
- The firm will shut down so long as the price is greater than what?
- The supply curve is the above \qquad

Summary

- How do you determine the market price in the long-run?
- How do you determine the number of firms in the long-run?
- When will the long-run market supply curve slope upwards?
- When will the long-run market supply curve slope upwards?

