Costs

Lecture 5

Reading: Perloff Chapter 7

July 2017

Introduction

- Last lecture, we discussed how firms turn inputs into outputs.
- But exactly how much will a firm wish to produce?

Introduction

- How much a firm wishes to produce depends on the cost function.
- The firm's first step is to find the production process that is technically efficient.
- Technical efficiency is a necessary condition for profit maximization, but it is not sufficient.
- The firm's second step is to find the technologically efficient production process that is also economically efficient.
- A firm is economically efficient if it minimizes the cost of producing a specified amount of output.

Outline

- Measuring Costs - How exactly do economists measure costs?
- Short-Run Costs - What does a firm's cost function look like when some inputs are fixed?
- Long-Run Costs - What does a firm's cost function look like when all inputs are variable? What is the firm's optimal input combination?
- Lower Costs in the Long Run - Firm has more flexibility in the long run, which implies lower costs.
- Cost of Producing Multiple Goods - Does producing multiple goods in the same factory make sense?

Measuring Costs

- To find the economically efficient level of output, we need to know how to measure costs.
- It is easy to measure explicit costs.
- Paying a worker $£ 7$ an hour is an explicit cost.
- But we must look at all costs, including the implicit ones.
- A cost is implicit if it reflects forgone opportunity rather than current expenditure.

Measuring Costs

- Opportunity cost is an implicit cost.
- The opportunity cost is the value of the next best alternative.
- The opportunity cost of me being in school is $\$ 25,000$ salary.
- Opportunity cost is important when a firm purchases capital, because it durable.

Measuring Costs

- Opportunity costs should influence the firms current decisions, but sunk costs should not.
- A sunk cost is an expenditure that cannot be recovered.
- A non-refundable movie ticket is an example of a sunk cost.

Measuring Costs

EXAMPLE

- You can play tennis inside or outside. You can book the inside court for a non-refundable $£ 20$ fee in advance.
- Playing outside is free.
- You prefer to play inside if it is rainy but outside if it is sunny.
- You booked the inside tennis court in advance and it turns out it is sunny.
- Do you play inside or outside?

Short-Run Costs

- To maximize profit, the firm needs to know how costs vary with output.
- A cost function $C(q)$ tells us how much it will cost to produce various levels of output. All points on the cost function are economically efficient.

Short-Run Costs

EXAMPLE

- Lets graph the cost function $C(q)=10 q+10$.
- If the firm wants to produce 10 units of output, could it do so at a cost of $£ 100$? At a cost of $£ 200$?

Short-Run Costs

- Remember in the short run, at least one input is fixed.
- The cost of producing 10 units in the short-run is not always the same as the cost of producing 10 units in the long-run.
- We will first look at the firm's cost function in the short-run, then the cost function in the long-run.

Short-Run Costs

- It is useful to break up our costs into different types.
- One type of cost is a fixed cost (F).
- Fixed costs do not vary with the level of output.
- For example, it costs $£ 10,000$ to heat a factory no matter how much you produce.

Short-Run Costs

- Fixed costs might be sunk or non-sunk.
- It is sunk if it cannot be recovered by shutting down.
- If you own a factory that has no alternative uses upon shutting down (you can't sell it), that is a sunk fixed cost.

Short-Run Costs

- A Variable cost $(V C)$ is the production expense that does change with quantity produced.
- The cost of dough is a variable cost for a bakery.
- Total cost (C) is the sum of fixed and variable cost.

$$
C=V C+F
$$

Short-Run Costs

EXAMPLE

- If our cost-function looks like $C(q)=100 q+10$, what are the variable costs and what are the fixed costs?

Short-Run Costs

- Marginal cost is the amount by which the total cost changes when we add more output.

$$
M C=\frac{d C(q)}{d q}
$$

Short-Run Costs

- Average fixed cost is the fixed cost divided by the amount produced q.

$$
A F C=\frac{F}{q}
$$

- It declines with output because the fixed cost is spread over more units.
- Average variable cost is the variable cost per each unit produced.

$$
A V C=\frac{V}{q}
$$

Short-Run Costs

- Average cost is the sum of these.

$$
A C=\frac{C}{q}=\frac{V C}{q}+\frac{F}{q}
$$

Short-Run Costs

EXAMPLE

- Suppose our cost function looks like.

$$
C=q^{2}-100 q+1000
$$

- What is the variable cost, fixed cost, marginal cost, average variable cost, average fixed cost and average cost?

Short-Run Costs

- What do all these cost curves look like graphically?
- Fixed cost does not vary with output, so it is a straight line.
- Average fixed cost falls as output decreases.
- Average cost is the vertical sum of average fixed cost and average variable cost.

Short-Run Costs

- Average cost slopes downward at first because average fixed cost declines.
- Average cost begins to slope upward because of diminishing marginal returns.
- Marginal cost intersects average cost at the minimum of average variable cost. Why?

Short-Run Costs

Short-Run Costs

- The production function we saw Ch. 6 and the cost function are basically mirror images of each other.
- We can find the cost function from the production function and vice versa.
- For example, the production function tells us we need 10 units of labour to produce 6 units of output. The cost of one unit of labour is £5.
- The cost of producing 6 units of output is then $£ 5 * 10=£ 50$.

Short-Run Costs

- Suppose we have the following short-run production function.

$$
q=f(L, \bar{K})=g(L)
$$

- We are in the short-run, so capital is fixed. Labour is the variable cost and capital is the fixed cost.

$$
V C=w L
$$

Short-Run Costs

- If we invert the production function we can find the amount of labor needed to produce any amount of output

$$
L=g^{-1}(q)
$$

- Plugging this in we can see our cost function is now

$$
C(q)=V(q)+F=w g^{-1}(q)+F
$$

Short-Run Costs

- Suppose our production function is as follows:

$$
q=L^{.5} K^{.5}
$$

- Capital is stuck at 16 units in the short-run so the short-run production function can be written as:

$$
q=4 L^{.5}
$$

- Suppose the price of capital is $\$ 1$ per unit of capital.

Short-Run Costs

- Solve this for L

$$
L=\frac{q^{2}}{16}
$$

- This tells us how much labour we will use to produce each amount of output.
- If we want to produce 4 units of output, we must use 1 unit of labour.

Short-Run Costs

- We can express the short-run cost function as

$$
C(q)=w \frac{q^{2}}{16}+16
$$

Short-Run Costs

EXAMPLE

- Suppose capital is fixed at 19 units and the price of capital is $\$ 2$ per unit.
- The production function is

$$
q=L K+L
$$

- What is the short-run cost function?

Short-Run Costs

- If we know marginal product of labour, we can easily find the marginal cost.
- Recall that variable cost in the short run is $V(q)=w L$

$$
M C=\frac{d V(q)}{d q}=\frac{d(w L)}{d q}=w \frac{d L}{d q}
$$

- We know the marginal product of labour is $\frac{d q}{d L}$ so we can write the relationship as

$$
M C=w \frac{1}{M P_{L}}
$$

Short-Run Costs

- If we know the average product of labour, we can easily find average variable cost.
- Remember $A V C=\frac{V C}{q}=\frac{w L}{q}$
- The average product of labour is $\frac{q}{L}$, so we can write the relationship as

$$
A V C=\frac{w}{A P_{L}}
$$

Short-Run Costs

EXAMPLE

- Suppose your short-run cost function is

$$
C(q)=q+q^{2}+10
$$

- The wage rate is $£ 1$. What is the average product of labour and the marginal product of labour when $q=4$?

Short-Run Costs

- The government can affect a firm's cost curves through various forms of taxation.
- Different types of taxes affect the cost curves in different ways.
- A specific tax will shift the firm's variable and marginal costs up, but won't affect the fixed costs.
- A franchise tax will affect the firm's fixed costs.

Long-Run Costs

- Now let's turn to the long-run.
- Firms can vary everything in the long run.
- There are no fixed costs (technically they can have avoidable fixed costs in the long run but we assume they don't).
- Long run cost is just

$$
C(q)=V C
$$

Long-Run Costs

- Now that both inputs are free to vary, what input combination should the firm select?
- Remember that isoquants show us all the technologically efficient input combinations.
- The firm must pick the technically efficient input combination that is the cheapest (economically efficient).

Long-Run Costs

- The Isocost line shows all the input combinations that cost exactly the same.
- You hire L units of labour at a price of w and K units of capital at a price of r.
- We can write the isocost line as

$$
C=w L+r K
$$

- The isocost is a lot like the budget line in consumer theory, the difference being that the firm has many isocosts and the consumer has only one budget line.

Long-Run Costs

EXAMPLE

- What is the equation for an isocost if $w=4, r=5$ and we want to spend $\$ 1,000$?
- What is the slope of the isocost line?
- What happens if we want to spend $\$ 2,000$?
- What happens if the wage increases?

Long-Run Costs

- Suppose the firm wants to produce \bar{Q} units. How does the firm find the cheapest input combination?
- There are three equivalent ways the firm can find this out.

Lowest Isocost Rule

- pick the isocost closest to the origin that touches the isoquant.

Long-Run Costs

Tangency Rule

- Assuming we have an interior optimum, the lowest isocost is where the isocost is tangent to the isoquant.
- The slope of the isocost is $-\frac{w}{r}$.
- The slope of the isoquant is the $M R T S=-\frac{M P_{L}}{M P_{K}}$.
- The optimal input combination occurs where

$$
\frac{w}{r}=\frac{M P_{L}}{M P_{K}}
$$

Long-Run Costs

Last Dollar Rule

- We can rearrange the tangency condition

$$
\frac{M P_{L}}{w}=\frac{M P_{K}}{r}
$$

- cost is minimized when the last dollar spent on labour adds as much extra output on the last dollar spent on capital.

Long-Run Costs

EXAMPLE

- If $w=2, M P_{L}=10, r=10, M P_{K}=10$, what should we do to lower costs?

Long-Run Costs

Long-Run Costs

EXAMPLE

- Suppose $w=5$ and $r=20$.
- If our production function is $q=K^{\frac{1}{2}} L^{\frac{1}{2}}$, what is the optimal input combination?
- If we want to produce 10 units, how much labour and capital will we use?

Long-Run Costs

- We can use math to get the same tangency condition.
- We want to minimize costs $w L+r K$ such that we produce $\bar{q}=f(L, K)$

$$
\min \mathcal{L}=w L+r K+\lambda[\bar{q}-f(L, K)]
$$

- Lets prove together that this results in $\frac{M P_{L}}{M P_{K}}=\frac{w}{r}$.

Long-Run Costs

- Rather than minimize costs for a desired level of output, what if we want to maximize output for some given cost?
- Our Lagrangian becomes

$$
\max \mathcal{L}=f(L, K)-\lambda(w L+r K-\bar{C})
$$

- If you do this, you get exactly the same result that $\frac{M P_{L}}{M P_{K}}=\frac{w}{r}$
- This is a "dual" problem... two sides of the same coin.

Long-Run Costs

EXAMPLE

- Suppose your production function is:

$$
q=K L
$$

- The wage rate is $w=1$ and the rental rate is $r=1$.
- Use the Lagrangian method to find the cheapest way of producing 25 units of output.

Long-Run Costs

- What happens when one factor becomes relatively cheaper?
- The slope of the isocost is $-\frac{w}{r}$, so the slope changes and we have a new cost minimizing combination.

Long-Run Costs

- How does the firm's cost change when we increase output?
- The expansion path shows us all the tangency points for each level of output.

Long-Run Costs

- The expansion path tells us the same thing as the long-run cost function essentially.
- When you produce q_{0} units, use K_{o} and L_{o} units of capital and labour.
- When you produce q_{1} units, use K_{1} and L_{1} units of capital and labour.

Long-Run Costs

- Suppose we found from our expansion path that $K=q$ and $L=\frac{q}{2}$ is the optimal input combination.
- We can plot the long run cost of producing different levels of q.. Suppose the wage is 24 and capital costs 8.

$$
C(q)=w L+r K=w \frac{q}{2}+r q=20 q
$$

Long Run Cost Functions

(b) Long-Run Cost Curve

Long-Run Costs

- Remember the short-run cost curve is U shaped.
- It slopes downward at first because average fixed cost declines.
- It slopes upward because of diminishing marginal returns.
- There are no fixed costs and diminishing marginal returns in the long run.

Long-Run Costs

- If the LRAC curve is downward sloping, the cost function exhibits economies of scale.
- The average cost falls as you produce more.
- If the LRAC curve is upward sloping, the cost function exhibits diseconomies of scale.
- The average cost increases as you produce more.
- If it is flat there are no economies of scale.

Long-Run Costs

- Recall that returns to scale refers to how much your output will change when you scale up your inputs.
- Do economies of scale imply returns to scale?
- What do you think?

Lower Costs in the Long-Run

- Firms have more degrees of freedom in the long run.
- Suppose the optimal combination for some level of output is $K=10$ and $L=5$, if we are in the short run K might be stuck at the
"wrong" level that is not cost minimizing.
- Costs in the short-run are always at least as high as in the long-run.
- In the long run, we can change K to be where we want.

Lower Costs in the Long-Run

Lower Costs in the Long-Run

- We can further illustrate this by comparing the short-run and long-run expansion paths.

Lower Costs in the Long-Run

- Another reason why costs are lower in the long is learning by doing.
- As workers gain experience and managers learn to organize, the average cost tends to fall over time.

Lower Costs in the Long-Run

(b) Economies of Scale and Learning by Doing

Cost of Producing Multiple Goods

- If firms produce multiple goods, the cost of one good might depend on the output of another.
- It is less expensive to produce poultry and eggs together than separately.
- If it is less expensive to produce goods jointly, the firm enjoys economies of scope.
- If it is more expensive to produce goods jointly, the firm experiences diseconomies of scope.

Cost of Producing Multiple Goods

- We can illustrate this by a production possibilities frontier

Summary

- What is an opportunity cost?
- What are fixed and variable costs?
- What are sunk costs?
- What are avoidable costs?

Summary

- How does a firm find the cost minimizing input combination in the long run?
- What are economies of scale?
- What are economies of scope?
- What is learning by doing?

