Firms and Production

Lecture 4

Reading: Perloff Chapter 6

July 2017

Introduction

- In this lecture we look at firms and production.
- It is the first step in deriving the supply curve we say in the first lecture.

Outline

- Ownership and Management of Firms - What exactly is a "firm?"
- Production - How a firm makes output from their set of inputs.
- Short-Run Production - Look at production when the firm has a fixed input.
- Long-Run Production - Look at production when there are no fixed inputs.
- Returns to Scale - How the size of a firm affects how much it produces.
- Productivity and Technical Change - The most output you can get for your inputs varies across firms and across time.

Ownership and Management of Firms

- A firm is simply some organization that takes inputs and turns it into outputs.
- We can roughly divide these firms into
- private sector
- public
- non-profit firms

Ownership and Management of Firms

- Sole proprietorship
- owned by an individual who is responsible for all debts.
- Example: A freelance writer or a bookkeeper.

Ownership and Management of Firms

- General partnership
- Jointly owned by multiple people who are together responsible for debts.
- Example: Law office with multiple partners.

Ownership and Management of Firms

- Corporations
- Owned by shareholders in proportion to the amount of stock they own.
- limited liability.
- Example: Microsoft, recently Facebook.

Ownership and Management of Firms

- Private firms have the single goal of maximizing profits.
- Profit (π) is defined as total revenue $(T R)$ minus total cost $(T C)$.

$$
\begin{aligned}
\pi & =T R-T C \\
T R & =p * q
\end{aligned}
$$

- A firm can only maximize profit if it achieves technical efficiency.
- Technical efficiency means they get the most output they possibly can from their set of inputs and technology.

Production

- A firm takes inputs (factors of production) and turns it into output according to its technology.
- We can broadly classify these inputs into capital (K), labour (L) and materials (M) (which we usually ignore for simplicity).

Production

- The production function summarizes this process, and tells us exactly how much output the firm can get from their inputs.
- For example suppose our production function is

$$
q=f(L, K)=2 * L * K
$$

- If the firm employs two units labour and 4 units of capital it gets 16 units of output (it could produce less, but that would not be efficient).

Production

EXAMPLE

- Suppose a firm produces output using only labour according to the production function $q=L^{2}$.
- Sketch this production function and identify two production plans, one that is technically efficient and one that is not.

Production

- The short run is the period of time that at least one factor of production cannot be changed.
- For example, dominoes can decide how many delivery drivers it hires in a month, but can't decide how many stores to build in this time frame.

Production

- The long run is a period of time in which all inputs can be varied.
- The difference between short and long run varies by industry.
- We call inputs that can't be changed fixed inputs, and ones that can be changed variable inputs.

Short-Run Production

- Lets say capital is fixed in the short run, our production function is then

$$
q=f(\bar{K}, L)
$$

- Suppose our production function is $q=2 K L$, but capital is fixed at $K=4$ in the short-run.
- Our short-run production function becomes $q=8 L$.
- We can summarize the relationship between output and the amount of labour used by the total product of labour, the average product of labour and the marginal product of labour.

Short-Run Production

- Total product of labour is the amount of output that a given amount of labour can produce holding other inputs fixed
- Marginal product of labour is the extra output you get from increasing labour by some infinitesimally small amount

$$
M P_{L}=\frac{\partial q}{\partial L}
$$

- Average product of labour is the amount of output produced per worker

$$
A P_{L}=\frac{q}{L}
$$

Short-Run Production

EXAMPLE

- Suppose our production function is

$$
Q=K * L^{2}
$$

- What is the total product of labour, marginal product of labour and average product of labour if capital is fixed at 50 ?

Short-Run Production

- If our short run production function is $q=L+30 L^{2}-L^{3}$

Short-Run Production

- We assume the firm can hire fractions of workers (which is why this is smooth)
- The $M P_{L}$ is the slope of the production function
- The $A P_{L}$ is the slope of the chord from the origin

Short-Run Production

- The previous production function is typical
- $A P_{L}$ initially rises because of gains from specialization, but it declines because capital is held constant.

Short-Run Production

- The $M P_{L}$ always intersects the $A P_{L}$ at the maximum of the $A P_{L}$ curve.
- When $M P_{L}>A P_{L}$, the average is pulled up.
- When $M P_{L}<A P_{L}$, the average is pulled down.

Short-Run Production

EXAMPLE

- Let's prove together that $M P_{L}=A P_{L}$ at the maximum of $A P_{L}$ for the production function $q=L+30 L^{2}-L^{3}$.

Short-Run Production

- The law of diminishing marginal returns is huge in economics.
- As you increase one input, holding all other inputs and technology constant, the marginal returns to that input will decrease eventually.
- The second derivative will become negative.
- You can't grow the world's food supply in a flower pot.
- This is why Malthus predicted mass starvation (one input -land- is fixed).

Short-Run Production

- For the production function

$$
\begin{aligned}
q & =L+30 L^{2}-L^{3} \\
M P_{L} & =\frac{d q}{d L}=1+60 L-3 L^{2}
\end{aligned}
$$

Short-Run Production

- The marginal product of labour is increasing for low levels of output because of gains from specialization.
- Eventually, the marginal product of labour starts to decrease.

$$
\begin{aligned}
\frac{d M P_{L}}{d L} & =60-6 L \\
L & <10 M P_{L} \text { increases } \\
L & >10 M P_{L} \text { decreases }
\end{aligned}
$$

Short-Run Production

EXAMPLE

- Suppose the world's supply of food is determined by the production function

$$
F=M^{\frac{1}{2}} L^{\frac{1}{2}}
$$

- M is land and is fixed at 3600 .
- L is labour.
- At what point does this production function exhibit diminishing marginal returns to labour?

Long-Run Production

- In the long run, the firm is free to select as much of any input... nothing is fixed.
- Lets suppose our production function is Cobb-Douglas

$$
q=3 L^{\frac{1}{2}} K^{\frac{1}{2}}
$$

- Try to graph this.

Long-Run Production

- Now that we have multiple variable inputs, our production function has multiple dimensions.
- Can't really deal with it graphically.
- We can summarize this production function in 2 dimensions.

Long-Run Production

- An isoquant is a curve that shows the efficient combinations of inputs that produce a single level of output
- This has a very similar interpretation to indifference curves.
- Every combination of labour and capital on the same isoquant will produce the same amount of output.

Long-Run Production

Long-Run Production

- Say our production function is

$$
Q=10 * K * L
$$

- Draw the isoquant for $Q=10$ and $Q=20$.

Long-Run Production

- Lets now discuss the properties of isoquants.

1. Further from the origin, the greater the output

- The more inputs you use, the more output you get if you are producing efficiently

Long-Run Production

2. They cannot cross

- Suppose the isoquant where $Q=20$ and $Q=15$ cross.
- The firm could produce 15 or 20 units of output for the same input combination.
- The firm would not be efficient if it produced 15 for that input combination.

Long-Run Production

3. They slope downward

- If they sloped upward, the firm could produce the same level of output with fewer inputs.

Long-Run Production

4. They are thin

- If they were thick, the firm could decrease its input use and get the same level of output

Long-Run Production

5. UNLIKE indifference curves, isoquants are a cardinal measure.

- Output is objective, it is not some abstract thing like utility.

Long-Run Production

- The curvature of the isoquant tells us how substitutable/complementary the inputs are in the production process.
- The more "curvy" the isoquant, the greater degree of complementarity there is between inputs

Long-Run Production

- If they are straight lines, the inputs are perfectly susbstitutable (apples from Oregon or Washington). This would come from a linear production function

$$
q=x+y
$$

- If they are right angles, inputs must be used in fixed proportions (one secretary per phone). this comes from a fixed-proportions production function

$$
q=\min \{x, y\}
$$

Long-Run Production

Long-Run Production

- The slope of the isoquant shows the firm's ability to replace one input with another holding output constant.
- This is called the marginal rate of technical substitution (MRTS).
- How much K can we give up for another unit of L holding output constant.

Long-Run Production

- Remember that the slope of an indifference curve is the negative ratio of marginal utilities.
- The slope of the isoquant (MRTS) is the ratio of marginal products.

$$
M R T S=\frac{\frac{d q}{d L}}{\frac{d q}{d K}}=-\frac{M P_{L}}{M P_{K}}
$$

Long-Run Production

EXAMPLE

- Lets find the MRTS of

$$
q=A L^{\alpha} K^{1-\alpha}
$$

- Is the MRTS constant for this production function?

Long-Run Production

- If we have normal convex isoquants, we have a diminishing marginal rate of substitution
- That is, when a lot of capital and little labour is used, the MRTS is really high. When a lot of labour and a little capital is used, it is really low.

Long-Run Production

- Suppose we have a factory with $1,000,000$ workers and only one machine.
- To keep output constant, we could trade one machine for a ton of workers (because workers need machines)
- As we get more machines, the number of workers we can trade for one more machine will decrease.

Long-Run Production

Long-Run Production

- For most isoquants, the MRTS is not constant.
- As we increase capital and decrease labour, at what rate does the MRTS change?
- This is the elasticity of substitution... A measure of how "curvy" our isoquants are

Long-Run Production

- Elasticity of substitution (σ) is the percentage change in the capital labour ratio w.r.t a percentage change in the MRTS

$$
\sigma=\frac{\frac{d(K / L)}{K / L}}{\frac{d M R T S}{M R T S}}=\frac{d(K / L)}{d M R T S} \frac{M R T S}{K / L}
$$

- If σ is really high, that means a tiny change in the MRTS results in a big change in K / L, the isoquant is pretty flat.

Long-Run Production

EXAMPLE

- What is the elasticity of substitution for the following Cobb-Douglas production function?

$$
Q=A L^{\alpha} K^{\beta}
$$

- What is the elasticity of substitution for a linear production function?
- What does that mean?

Returns to Scale

- If we increase our inputs proportionately, what happens to our output?
- This is called returns to scale
- We can have increasing, decreasing or constant returns to scale.

Returns to Scale

- If doubling our inputs leads to exactly double the output, we have constant returns to scale

$$
2 f(L, K)=f(2 L, 2 K)
$$

Returns to Scale

- If doubling our inputs leads to more than double the output, we have increasing returns to scale

$$
2 f(L, K)<f(2 L, 2 K)
$$

- Could be caused by greater specialization

Returns to Scale

- If doubling our inputs leads to less than double the output, we have decreasing returns to scale

$$
2 f(L, K)>f(2 L, 2 K)
$$

- Could be caused by management or organizational problems

Returns to Scale

- What industries do you think have constant, increasing or decreasing returns to scale?
- What are some factors that determine returns to scale?

Returns to Scale

- Generally speaking, our production function is homogenous of degree γ when

$$
f(x L, x K)=x^{\gamma} f(L, k)
$$

Returns to Scale

EXAMPLE

- The following production function is homogenous of degree what?

$$
Q=K^{\frac{1}{2}} L^{\frac{1}{4}}
$$

Returns to Scale

- It is possible for production functions to have varying returns to scale.
- Could have increasing returns to scale for low levels of production, and decreasing returns to scale for high levels of production.
- For low levels of production, you have gains to specialization and for large levels of production, you run into management problems.

Returns to Scale

Productivity and Technical Change

- Even if two firms are producing efficiency, it is possible that they are not equally as productive.
- We can express a firm's relative productivity by the ratio of the firm's output q to the amount of output the most productive firm in the industry could have produced from the same inputs q^{*}

$$
\rho=\frac{q}{q^{*}} * 100
$$

- If you are the most productive firm in the industry, what is ρ ?
- Estimated that the average productivity of manufacturing firms in the US is 63% to 99%.

Productivity and Technical Change

- It is possible that one firm can produce more today from a given amount of inputs than it could in the past.
- An advance in knowledge that allows more output to be produced from the same level of inputs is called technical progress.
- Can be neutral or non-neutral.

Productivity and Technical Change

- Neutral technical change means the firm can produce more output using the same ratio of inputs.

$$
q=A(t) f(L, K)
$$

- For example

$$
\begin{aligned}
& q_{1}=10 * K^{5} L^{.5} \\
& q_{2}=100 * K^{5} L^{.5}
\end{aligned}
$$

Productivity and Technical Change

- Or it can be non-neutral in which innovations alter the proportion of input used.

$$
\begin{aligned}
& q_{1}=10 * K^{5} L^{.5} \\
& q_{2}=10 * K^{.5} L^{.8}
\end{aligned}
$$

- If a machine is invented that requires only one person to operate it rather than two, this is a non-neutral labour saving technical change.

Summary

- What is technical efficiency?
- What does a production function show you?
- What is the difference between the short and long run?

Summary

- What causes diminishing marginal returns?
- What is an isoquant
- What is the marginal rate of substitution and the elasticity of substitution?
- What are returns to scale?
- What is the difference between a neutral and non-neutral technical change?

