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ABSTRACT___________________________________________________________________ 

We develop a model for analyzing the sovereign debt crises of 2010–2012 in the Eurozone.  The 
government sets its expenditure-debt policy optimally.  The need to sell large quantities of bonds 
every period leaves the government vulnerable to self-fulfilling crises in which investors, 
anticipating a crisis, are unwilling to buy the bonds, thereby provoking the crisis.   In this 
situation, the optimal policy of the government is to reduce its debt to a level where crises are not 
possible.  If, however, the economy is in a recession where there is a positive probability of 
recovery in fiscal revenues, the government may optimally choose to “gamble for redemption,” 
running deficits and increasing its debt, thereby increasing its vulnerability to crises.   
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1. Introduction 

This paper develops a model of the sorts of sovereign debt crisis that we have witnessed 

during 2010–2012 in such European countries as Greece, Ireland, and Portugal and that are 

ongoing in such countries as Cyprus, Italy, and Spain.  The government sets its expenditure-debt 

policy optimally, given a fixed probability of a recovery in fiscal revenues.  In doing so, the 

government can optimally choose to “gamble for redemption,” and the economy can be 

optimally driven into a situation of increasing vulnerability to speculative attacks in the form of 

self-fulfilling debt crises.  We provide a theory of sovereign debt crises in which both borrowers 

and lenders behave optimally, but where countries borrow so much, and lenders are willing to 

lend them that much, as to make a default unavoidable.  Our theory contrasts alternative 

explanations based on misperceptions or other forms of irrationality. 

Our paper provides a benchmark for analyzing government behavior in the face of fiscal 

pressures and a tool for testing the implications of alternative policy responses.  In our analysis, 

as in Cole and Kehoe (1996, 2000), we characterize in a simple Markov structure the time 

consistent policy of a strategic government that is faced with non-strategic bond holders. 
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The recent worldwide recession — which continues in many countries — and the policies 

intended to overcome it have generated very large government budget deficits and increases in 

government debt over the entire developed world.  As Figure 1 shows, in the Unites States 

government debt has gone up since 2005, reaching 98.7 percent of GDP in 2011 and is expected 

to reach 104.8 percent by 2012, spurring a very heated debate in July 2011 about changing the 

debt ceiling.  In the Eurozone the level of government debt was going down systematically since 

the mid-1990s reaching a minimum in 2007 of 66.3 percent of GDP.  Since then, it has risen to 

88.1 percent in 2011 and is expected to reach 92.2 percent in 2012.  

The pattern observed for the entire Euro area in Figure 1 is common across most 

European countries, but it has been more extreme in countries like Greece, whose debt is up to 

165.4 percent of GDP in 2011.  Figure 2 plots debt to GDP ratios for the most troubled European 

economies and Germany.   
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Figure 2 

In our model, the crucial element putting countries at risk of suffering a self-fulfilling 

debt crisis is the drop in government revenues that occurs as the result of a recession in the 
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private sector of the economy.  Figure 3 shows that the worldwide recession that started in 2008 

is still ongoing in Greece, Ireland, Italy, Portugal, and Spain. 
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Figure 3 

Notice that the drops in real government revenues (deflated by the GDP deflator) — presented in 

figure 4 — are also very large. As a consequence the yields in government bonds starting 

diverging. While the return on German bonds decreased, the risk premia of the troubled 

economies experienced very large and sudden increases (see Figure 5), reflecting an increased 

perception of the probability of a default.  

Our analysis shows that — under certain conditions, which correspond to parameter 

values in our model — it is optimal for the government to “gamble for redemption.”  By this, we 

mean that the government does not undertake painful adjustments to reduce spending, hoping for 

a recovery of government revenues, and debt continues to increase.  Indeed, the government 

strategy follows a martingale gambling strategy that will send the economy into the crisis zone if 

the recovery does not happen soon enough.  Under other conditions, however, the government 
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gradually reduces the level of debt to exit the crisis zone and avert the possibility of a liquidity 

crisis, as in Cole and Kehoe (1996, 2000). 
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Figure 4 

In our environment not running down debt (or running it up until default is unavoidable) 

can be part of the optimal strategy under some circumstances. In contrast, Reinhart and Rogoff 

(2009) argue that the reason some countries fail to adjust and are vulnerable to a potential crisis 

is because somehow both the governments and their lenders are fooling themselves into thinking 

that “this time is different” (this is indeed the title of their book). As such, countries vulnerability 

would be the result of self-delusion and lack of rationality. In contrast to their view, we provide a 

model in which such apparently irrational behavior can be an optimal response to either 

fundamentals or to expectations of a bailout by both borrowing governments and lenders that 

perfectly understand the risks of a crisis. 

This paper is most related to those of Cole and Kehoe (1996, 2000).  Cole and Kehoe 

provide a dynamic stochastic general equilibrium model of a country subject to the possibility of 

a self-fulfilling debt crisis in every period.  The substantial difference between their framework 

and ours is that, in their framework, debt crises are liquidity crisis due solely to the inability to 
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roll over debt that could arise under certain conditions.  As such, a decisive action by a third 

party providing a loan or a bailout would be enough to avert the problem.  Indeed, Cole and 

Kehoe (1996, 2000) intended their model to shed light on the financial troubles of Mexico in 

1994–95, and, in that occasion, the decisive action of the Clinton administration on January 31, 

1995 was enough to avert the crisis.  European Union rescue packages for countries Greece, 

Ireland, and Portugal have not had the same healing properties.  In fact, quite the opposite seems 

to be the case, with the spreads on bonds, relative to Germany’s, continuing to rise despite the 

announcements and first implementations of the rescue packages. This indicates more 

fundamental solvency problems than those present in a standard liquidity crisis of the type 

studied in Cole and Kehoe, as discussed by Chamley and Pinto (2011) for the Greek case. Our 

model accommodates this issue. 

Yields on 5 year government bonds 
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Figure 5 

Aguiar and Gopinath (2006) and Arellano (2008) focus on default incentives on 

international borrowing over the cycle, but abstract from the possibility of self-fulfilling debt 

crises. Similar frameworks have been used to analyze currency crisis following Calvo (1988). Da 
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Rocha et al (2010) and Araujo et al (2011) extend the Cole-Kehoe framework to include 

different monetary and currency regimes. 

Our model establishes conditions under which a debt crisis can occur, and how that 

possibility shapes optimal government’s behavior, but is silent about why at a particular point in 

time a crisis might or might not occur.  Indeed, once the government is in the crisis zone (and we 

show under what conditions a government will find it optimal to enter it) a potential crisis is 

triggered by a non-fundamental random variable: a sunspot.  A very interesting related strand of 

the literature, starting with the work of Morris and Shin (1998), would relate the probability of 

such an event happening to lack of perfect knowledge within a global game framework. While 

this strand of the literature focuses on why a crisis might happen at a particular point in time, we 

focus on the conditions under which a benevolent government might find it optimal to subject 

itself to such a vulnerable position. 

Bailouts in the form of issuing credit at below market price to troubled economies — as 

those used in the presence of liquidity crisis — might or might not work.  In fact, we develop a 

calibrated example in which the probability of a bailout makes it more attractive for a 

government to enter the crisis zone, becoming more vulnerable to a crisis. 

Our model provides sharp predictions of when a third party bailout helps avert a liquidity 

crisis, as in the case of the Mexican crisis of 1994–95, and when such a strategy would only 

make things worse.  Since the response of the government is always optimal, however, the only 

policy prescription relate to the optimal form of the bailout for the intervening third party.  A 

different scenario arises if the government is impatient, as in Cole and Kehoe (1996), or if the 

government assigns a different probability to a recovery than bankers, or if the government is 

trying to trick bankers or third parties capable of implementing a bailout with respect to the 

probability of a recovery.  It might be the case that the government is gambling for redemption, 

while it should be making sacrifices and decreasing its debt position. A complete analysis of a 

game between two strategic players — the government of the country and the third party, in the 

case of the European countries that we have discussed, the European Union or the European 

Central Bank — is beyond the scope of this paper. 
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2. General model 

The state of the economy in every period 1( , , , )s B a z ζ−=  is the level of government debt 

B , whether or not the private sector is in normal conditions 1a =  or in a recession 0a = , 

whether or not default has occurred in the past 1z− , and the value of the sunspot variable ζ . 

The country’s GDP is 

1 1( , ) a zy a z A Z y− −=  

where 1 , 0A Z> > .  Before period 0, 1a = , 1z = .  In period 0, a  unexpectedly becomes 

0 0a =  and GDP drops from y y=  to y Ay y= < .  In every period t , 1, 2,...t = , ta  becomes 1 

with probability p , 1 0p> > .  Once 1ta = , it stays equal to 1 forever.  The drop in 

productivity by the factor Z  is the country’s default penalty.  Once 0tz = , it stay equal to 0 

forever.  Here the default penalty occurs in the same period as the crisis.  We could have it occur 

in the next period, in which case 

111
1( , ) zay a z A Z y−−−

− = . 

While the results in our numerical experiments would change, this alternative assumption has no 

qualitative effect on our results. 

Government tax revenue is ( , )y a zθ  where we assume, to keep things simple, that the tax 

rate θ  is fixed.  The government’s problem is to choose , , ',c g B z  to solve 

( ; , ) max ( , ) ( '; , )V s p u c g EV s pπ β π= +  

s.t. (1 ) ( , )c y a zθ= −  

( , ) ( ', ; , ) 'g zB y a z q B s p Bθ π+ = +  

0z =  if 1 0z− = . 

Here 1z =  is the decision not to default, and 0z =  is the decision to default.  We later specify 

the precise timing of the interaction of the government and international bankers, which 

determines the price of bonds ( ', ; , )q B s p π  and the default decision z . 
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In general, we assume that, for any b such that Ay b− is an element of the feasible set of 

levels for government expenditures g ,  

((1 ) , ) ((1 ) , )g gu Ay Ay b u y y bθ θ θ θ− − > − − . 

This assumption provides the government with the incentive to transfer resources into the current 

period during a recession from future periods in which the economy has recovered.  It is satisfied 

by any concave utility function separable in c  and g .  It is also satisfied by functions like 

log( )c g c g+ − − . 

In every period a random variable tζ  is drawn from the uniform distribution on [0,1] .  If 

1tζ π> − , international bankers expect there to be a crisis and do not lend to the government if 

such a crisis would be self-fulfilling.  This allows us to set the probability of a self-fulfilling 

crisis at an arbitrary level π , 1 0π≥ ≥ , if the level of debt is high enough for such a crisis to be 

possible.  The timing within each period is like that in Cole and Kehoe (1996, 2000): 

1. tζ  is realized, the aggregate state is 1( , , , )t t t t ts B a z ζ−= , and the government chooses how 

much debt 1tB +  to sell. 

2. Each of a continuum of measure one of international bankers chooses how much debt 1tb +  to 

purchase.  (In equilibrium, of course, 1 1t tb B+ += .) 

3. The government makes it default decision tz , which determines ty , tc , and tg .  

The crucial elements of this timing are that, first, the government chooses how much debt 

1tB +  it wants to sell and this determines the price of the debt if there is no crisis, and only later 

does the government choose whether to default or not.   That is, the price of the debt depends on 

the amount of new debt being offered 1tB + , but whether or not a crisis takes place depends on the 

amount of debt that has to be repaid tB . 
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2.1. Bond prices 

International bankers are risk neutral with discount factor β  so that the bond prices 

( ', ; , )q B s p π  are determined by the probability of default in the next period.   There is a 

continuum of measure one of bankers.  Each solves the dynamic programming problem 

( , ', ; , ) max (( ', '', '; , )W b B s p x EW b B s pπ β π= +  

( ', ; , ) ' ( ', , ( ', ; , ); , )x q B s p b w z B s q B s p p bπ π π+ = +  

0x ≥ , b A≥ − . 

The constraint b A≥ −  eliminates Ponzi schemes, but A  is large enough so that the constraint 

does not otherwise bind.  We assume that the banker’s endowment of consumption good w  is 

large enough to rule out corner solutions in equilibrium. 

There are four cutoff levels of debt:  ( ; , )b a p π , ( ; , )B a p π , 0,1a = : 

1. If (0; , )B b p π≤ , the government does not default when the private sector is in a recession 

even if international bankers do not lend, and, if (0; , )B b p π> , the government  defaults when 

the private sector is in a recession if international bankers do not lend. 

2. If (1; , )B b p π≤ , the government does not default when the private sector is in normal 

conditions even if international bankers do not lend, and, if (1; , )B b p π> , the government 

defaults when the private sector is in normal conditions if international bankers do not lend.   

3. If (0; , )B B p π≤ , the government does not default when the private sector is in a recession if 

international bankers lend, and, if (0; , )B B p π> , the government defaults when the private 

sector is in a recession even if international bankers lend.   

4. If (1; , )B B p π≤ , the government does not default when the private sector is in a normal 

conditions if international bankers lend, and, if (1; , )B B p π> , the government defaults when the 

private sector is in normal conditions even if international bankers lend.   
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The assumption that once 0tz = , it stay equal to 0 forever says that a country that 

defaults is permanently excluded from international borrowing or lending.  This assumption can 

be modified at the cost of complicating the analysis.  The assumption has two consequences for 

the relation of the bond price q  to the current state s :  First, once default has occurred, 

international bankers do not lend: 

( ', ( , ,0, ); , ) 0q B B a pζ π = . 

Second, during a crisis, international bankers do not lend: 

( ', ( , ,1, ); , ) 0q B B a pζ π =  

if ( ; , )B b a p π>  and 1ζ π> − .  Otherwise, the bond price q  depends on the amount of bonds 

'B  that the government offers for sale. 

We will show that (0; , ) (1; , )b p b pπ π< , (0; , ) (0; , )b p B pπ π< , (1; , ) (1; , )b p B pπ π< , 

and (0; , ) (1; , )B p B pπ π< .  Here, we first consider the case where (1; , ) (0; , )b p B pπ π< , that 

is, where 

(0; , ) (1; , ) (0; , ) (1; , )b p b p B p B pπ π π π< < < . 

The first order condition for to the international bankers’ utility maximization problem implies 

that 

( ', ; , ) ( '( '), ', ( '( '), '; , ); , )q B s p Ez B s s q B s s p pπ β π π= , 

which implies that 

( )
                                   if ' (0; , )

(1 )(1 )     if (0; , ) ' (1; , )

( ', ( ,0,1, ); , ) (1 )                        if (1; , ) ' (0; , )
(1 )                      if (0;

B b p
p p b p B b p

q B B p b p B B p
p B

β π

β π π π

ζ π β π π π

β π

≤

+ − − < ≤

= − < ≤

− , ) ' (1; , )
0                                    if (1; , ) '

p B B p
B p B

π π

π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪ < ≤⎪⎪⎪ <⎪⎪⎩

 

                                   if ' (1; , )
( ', ( ,1,1, ); , ) (1 )                        if (1; , ) ' (1; , )

0                                    if (1; , ) '

B b p
q B B p b p B B p

B p B

β π

ζ π β π π π

π

⎧⎪ ≤⎪⎪⎪= − < ≤⎨⎪⎪⎪ <⎪⎩

. 
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 Figure 6 shows the price schedule. 

 

Bond prices as a function of bonds offered for sale and conditions in the private sector 

Figure 6 

Now consider the case where (0; , ) (1; , )B p b pπ π< , that is, where 

(0; , ) (0; , ) (1; , ) (1; , )b p B p b p B pπ π π π< < < . 

Here the solution to the international bankers’ utility maximization problem implies that 

( )
                                   if ' (0; , )

(1 )(1 )     if (0; , ) ' (0; , )

( ', ( ,0,1, ); , )                                 if (0; , ) ' (1; , )
(1 )                      if 

B b p
p p b p B B p

q B B p p B p B b p
p

β π

β π π π

ζ π β π π

β π

≤

+ − − < ≤

= < ≤

− (1; , ) ' (1; , )
0                                    if (1; , ) '                  

b p B B p
B p B

π π

π

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪ < ≤⎪⎪⎪ <⎪⎪⎩

 

There is yet a third case, which we will show is not degenerate, where 

(0; , ) (1; , ) (0; , ) (1; , )b p b p B p B pπ π π π< = < . 

Here 

(0)b  (1)b  (0)B  (1)B  'B  

( ', )q B a  

( ',0)q B  

( ',1)q B  
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( )
                                   if ' (0; , )

(1 )(1 )     if (0; , ) ' (1; , )
( ', ( ,0,1, ); , )

(1 )                      if (1; , ) ' (1; , )
0                                    i

B b p
p p b p B b p

q B B p
p b p B B p

β π

β π π π
ζ π

β π π π

≤

+ − − < ≤
=

− < ≤

f (1; , ) '                  B p Bπ

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪ <⎪⎩

. 

Since the second and the third cases, where (0; , ) (1; , )B p b pπ π≤ , are only possible for 

very low values of A , we will focus on the first case. 

2.2. Definition of equilibrium 

An equilibrium is a value function for government ( )V s  and policy functions '( )B s  and 

( ', , ; , )z B s q p π  and ( ', , ; , )g B s q p π , a value function for bankers ( , ', ; , )W b B s p π  and policy 

correspondence '( , ', ; , )b b B s p π , and a bond price function ( ', ; , )q B s p π such that  

1. ( )V s  and '( )B s  solve the government’s problem at the beginning of the period:   

1( , , , ; , ) max ( , ) ( ', ', , '; , )V B a z p u c g EV B a z pζ π β ζ π− = +  

s.t. (1 ) ( , ( ', , ( ', ; , ); , ))c y a z B s q B s p pθ π π= −  

( ', , ( ', ; , ); , ) ( ', , ( ', ; , ); , )
   ( , ) ( ', ; , ) '
g B s q B s p p z B s q B s p p B

y a z q B s p B
π π π π

θ π
+

= +
. 

2. '( , ', ; , )b b B s p π  solves the banker’s problem and ( ', ; , )q B s p π  is consistent with market 

clearing and rational expectations: 

'( ) '( , ', ; , )B s b b B s p π∈  

( ', ; , ) ( '( '), ', ( '( '), '; , ); , )q B s p Ez B s s q B s s p pπ β π π= . 

3. ( ', , ; , )z B s q p π  and ( ', , ; , )g B s q p π  solve the government’s problem at the end of the period:    

max ( , ) ( ', ', , '; , )u c g EV B a z pβ ζ π+  

s.t. (1 ) ( , )c y a zθ= −  

( , ) 'g zB y a z qBθ+ = +  

0z =  or 1z = , but 0z =  if 1 0z− = . 
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Notice that, when the government solves its problem at the beginning of the period, it 

takes as given the optimal responses both of international bankers and itself later in the period.  

In particular, the government cannot commit to repaying its debt and not defaulting later in the 

period.  Furthermore, since the occurrence of a crisis depends on the amount of debt to be repaid 

B , not the amount of debt offered for sale 'B , once a sunspot has occurred that signals that a 

self-fulfilling crisis will take place that period, there is nothing that the government can do to 

avoid it. 

It is also worth noting that this model has many equilibria.  Our definition of equilibrium 

restricts our attention to equilibria with a simple Markov structure.  Many other possibilities are 

possible.  If we include the date in the state 1( , , , , )s B a z tζ−= , for example, we could allow 

crises to occur only in even periods t  or in periods that are prime numbers, or we could allow the 

probability of a crisis π  to be time varying in other ways.  The advantage of our simple Markov 

structure is that it makes it easy to characterize and compute equilibria. 

3. Self-fulfilling liquidity crises 

Although we are able to prove some propositions about the equilibria of the general 

model, we need to resort to numerical examples to illustrate the possibilities and to do 

comparative statics analysis.  Before turning to the results for the general model, we study two 

special cases, where we can provide analytical characterizations of the equilibria in which we are 

interested.  The first is the case where 1a = , that is, where the private sector has recovered and 

where there is no incentive for the government to gamble for redemption.  This is the model of 

Cole-Kehoe (1996, 2000) without private capital.  Notice that we can easily modify the analysis 

of this case to study the limiting case where 0a =  and 0p = , that is, where there is a recession 

but no possibility for recovery, simply by replacing y  with Ay  in what follows.  In this case, 

where self-fulfilling crises are possible, but where there is no incentive for the government to 

gamble for redemption, the optimal strategies of the government involve either leaving debt 

constant or running it down to eliminate the possibility of a crisis.  In the next section, we 

consider the other extreme case, where recovery is possible but not self-fulfilling crises. 

We start by assuming that 0π= .  Notice that, since a recovery has already occurred in 

the private sector, p  is irrelevant.  To derive the optimal government policy, we solve  
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' ''
max ( , )s

t tt t
u c gβ

∞

=∑  

's.t. (1 )tc yθ= −  

' ' ' 1t t tg B y Bθ β ++ = +  

'tB B=  

' (1; ,0)tB B p≤ . 

The first order conditions are 

'
' '((1 ) , )t

g t tu y gβ θ λ− =  

' 1 't tλ βλ+ = . 

The transversality condition is 

' ' 1lim 0t s tBλ→∞ + ≥ . 

The first order conditions imply that 

' ' 1((1 ) , ) ((1 ) , )g t g tu y g u y gθ θ −− = −  

' 1 ' ˆt tg g g+ = = . 

Consequently, 

( )' 1 '
1 ˆt tB g B yθ
β+ = + − . 

Suppose that  

ˆ (1 )g y Bθ β= − − . 

Then sB B= .  Otherwise 'tB  is explosive.  It is easy to show that too low of a ĝ  results in a path 

for 'tB  that violates the transversality condition.  Too high of a ĝ  results in a path for 'tB  that 

hits (1; ,0)B p .  It is easy to prove that this cannot be optimal. 

We can calculate the value of being in state 1( , , , ) ( ,1,1, )s B a z Bζ ζ−= =  as 

((1 ) , (1 ) )( ,1,1, ; ,0)
1

u y y BV B p θ θ β
ζ

β
− − −

=
−

. 
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The calculation of utility when default has occurred, when 0z = , is mechanical.  In this case 

0B =  and  

(1 )c Zyθ= −  

g Zyθ= . 

Notice that, once a default has occurred, ζ  and π  are irrelevant.  Consequently, when 

1( , , , ) ( ,1,0, )s B a z Bζ ζ−= =  

((1 ) , )( ,1,0, ; ,0)
1

u Zy ZyV B p θ θ
ζ

β
−

=
−

, 

Let us calculate (1; ,0)b p .  Let ( , , ; , )nV B a q p π  be the value of not defaulting.  The utility of 

repaying B  even if the international bankers do not lend is 

((1 ) , )( ,1,0; ,0) ((1 ) , )
1n

u y yV B p u y y B β θ θ
θ θ

β
−

= − − +
−

, 

while the utility of defaulting ( , , ; , )dV B a q p π  is  

((1 ) , )( ,1,0; ,0)
1d

u Zy ZyV B p θ θ
β

−
=

−
. 

Consequently, (1; ,0)b p  is determined by the equation 

( (1; ,0),1,0; ,0) ( (1; ,0),1,0; ,0)n dV b p p V b p p=  

((1 ) , ) ((1 ) , )((1 ) , (1; ,0))
1 1

u y y u Zy Zyu y y b p β θ θ θ θ
θ θ

β β
− −

− − + =
− −

 

( )((1 ) , ) ((1 ) , (1; ,0)) ((1 ) , ) ((1 ) , )
1

u Zy Zy u y y b p u y y u Zy Zyβ
θ θ θ θ θ θ θ θ

β
− − − − = − − −

−
. 

Let us now characterize (1; ,0)B p .  We first find the stationary upper limit on debt 

(1; ,0)sB p  and then show that (1; ,0) (1; ,0)sB p B p= .  Suppose that international lenders set 

q β=  when 1a = .  Then, if the government decides to repay its debt  

((1 ) , (1 ) )( ,1, ; ,0)
1n

u y y BV B p θ θ β
β

β
− − −

=
−

, 
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while the value of defaulting is 

((1 ) , )( ,1, ; ,0) ((1 ) , )
1d

u Zy ZyV B p u Zy Zy B β θ θ
β θ θ β

β
−

= − + +
−

. 

Consequently, (1; ,0)sB p  is determined by the equation 

( (1; ,0),1, ; ,0) ( (1; ,0),1, ; ,0)s s
n dV B p p V B p pβ β=  

((1 ) , (1 ) (1; ,0)) ((1 ) , )((1 ) , (1; ,0))
1 1

s
su y y B p u Zy Zyu Zy Zy B pθ θ β β θ θ

θ θ β
β β

− − − −
= − + +

− −
 

. 
( )

((1 ) , (1; ,0)) ((1 ) , (1 ) (1; ,0))

   ((1 ) , (1 ) (1; ,0)) ((1 ) , )
1

s s

s

u Zy Zy B p u y y B p

u y y B p u Zy Zy

θ θ β θ θ β
β

θ θ β θ θ
β

− + − − − −

= − − − − −
−

 

Suppose that, at 0t = , the government finds itself with 0 (1; ,0)sB B p> .  Then it cannot be 

optimal to run down its debt to 1 (1; ,0)sB B p≤  in one period, setting 

0 0 1g y B Bθ β= − +  

in 0t =  and  

1(1 )tg y Bθ β= − −  

thereafter.  To demonstrate this, suppose, to the contrary, that  

1
0 1

0

((1 ) , (1 ) )((1 ) , )
1

((1 ) , )   ((1 ) , )
1

u y y Bu y y B B

u Zy Zyu Zy Zy B

β θ θ β
θ θ β

β
β θ θ

θ θ β
β

− − −
− − + +

−
−

≥ − + +
−

. 

If we choose 1B  to maximize the left hand side of this inequality, the utility of not defaulting, we 

set 1 0B B= .  This implies that 

0
0 0

1
0 1

((1 ) , (1 ) )((1 ) , )
1

((1 ) , (1 ) )   ((1 ) , )
1

u y y Bu y y B B

u y y Bu y y B B

β θ θ β
θ θ β

β
β θ θ β

θ θ β
β

− − −
− − + +

−
− − −

≥ − − + +
−
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for any 1 0B B≠ .  This, however, contradicts or assumption that 0 (1; ,0)sB B p> . 

Let us now consider the case where 0π> .  First, observe that 

(1; , ) (1; ,0)b p b pπ =  

Suppose that 0 (1; , )B b p π>  and the government decides to reduce B  to (1; , )b p π  in T  periods, 

1, 2,...,T = ∞ .  The first order conditions for the government’s problem imply that 

0( ; )T
tg g B π= . 

The government’s budget constraints are 

0 0 1( ; ) (1 )Tg B B y Bπ θ β π+ = + −  

0 1 2( ; ) (1 )Tg B B y Bπ θ β π+ = + −  

 

0 2 1( ; ) (1 )T
T Tg B B y Bπ θ β π− −+ = + −  

0 1( ; ) (1; , )T
Tg B B y b pπ θ β π−+ = + . 

Multiply each equation by ( (1 ))tβ π−  and adding, we obtain 

1 1 1
0 00 0

( (1 )) ( ; ) ( (1 )) ( (1 )) (1; , )T Tt T t T
t t

g B B y b pβ π π β π θ β π β π
− − −

= =
− + = − + −∑ ∑  

( )1
0 0

1 (1 )( ; ) ( (1 )) (1; , )
1 ( (1 ))

T T
Tg B y B b pβ π

π θ β π β π
β π

−− −
= − − −

− −
. 

Notice that 

0 0 0( ; ) lim ( ; ) (1 (1 ))T
Tg B g B y Bπ π θ β π∞
→∞= = − − − . 

We can compute the value 0( ; )TV B π  of each of the policies of running down the debt in T  

periods, 1, 2,...,T = ∞ .  Letting 0( ; )T
tV B π  be the value of the policy where there are still t  

periods to go in running debt, we can write 

0 0 1 0
((1 ) , )( ; ) ((1 ) , ( ; )) (1 ) ( ; )

1
T T T

T T
u Zy ZyV B u y g B V B βπ θ θ

π θ π β π π
β−

−
= − + − +

−
 

1 0 0 2 0
((1 ) , )( ; ) ((1 ) , ( ; )) (1 ) ( ; )

1
T T T

T T
u Zy ZyV B u y g B V B βπ θ θ

π θ π β π π
β− −

−
= − + − +

−
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2 0 0 1 0
((1 ) , )( ; ) ((1 ) , ( ; )) (1 ) ( ; )

1
T T T u Zy ZyV B u y g B V B βπ θ θ

π θ π β π π
β

−
= − + − +

−
 

1 0 0
((1 ) , )( ; ) ((1 ) , ( ; ))

1
T T u y yV B u y g B β θ θ

π θ π
β

−
= − +

−
. 

Notice that g  increases from 0( ; )Tg B π  to yθ  in period T .  To calculate 0( ; )TV B π , we use 

backwards induction 

2 0 0( ; ) (1 (1 )) ((1 ) , ( ; ))
((1 ) , )   

1
((1 ) , )   (1 )

1

T TV B u y g B
u Zy Zy

u y y

π β π θ π
βπ θ θ

β
β θ θ

β π
β

= + − −

−
+

−
−

+ −
−

 

2
3 0 0

2

( ; ) (1 (1 ) ( (1 )) ) ((1 ) , ( ; ))
((1 ) , )   (1 (1 ))

1
((1 ) , )   ( (1 ))

1

T TV B u y g B
u Zy Zy

u y y

π β π β π θ π
βπ θ θ

β π
β

β θ θ
β π

β

= + − + − −

−
+ + −

−
−

+ −
−

 

 

2 1
0 0

2 2

2

( ; ) (1 (1 ) ( (1 )) ... ( (1 )) ) ((1 ) , ( ; ))
((1 ) , )   (1 (1 ) ( (1 )) ... ( (1 )) )

1
((1 ) , )   ( (1 ))

1

T T T
T

T

T

V B u y g B
u Zy Zy

u y y

π β π β π β π θ π
βπ θ θ

β π β π β π
β

β θ θ
β π

β

−

−

−

= + − + − + + − −

−
+ + − + − + + −

−
−

+ −
−

 

and, of course, 0 0( ; ) ( ; )T T
TV B V Bπ π= : 

1

0 0

2

1 ( (1 )) 1 ( (1 )) ((1 ) , )( ; ) ((1 ) , ( ; ))
1 (1 ) 1 (1 ) 1

((1 ) , )   ( (1 ))
1

T T
T T

T

u Zy ZyV B u y g B

u y y

β π β π βπ θ θ
π θ π

β π β π β
β θ θ

β π
β

−

−

− − − − −
= − +

+ − + − −
−

+ −
−

 

Notice that  
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0
0

((1 ) , (1 (1 )) ) ((1 ) , )( ; )
1 (1 ) (1 )(1 (1 ))

u y y B u Zy ZyV B θ θ β π βπ θ θ
π

β π β β π
∞ − − − − −

= +
+ − − + −

. 

To find (1; , )B p π , we solve 

1 2max ( (1; , )), ( (1; , )),..., ( (1; , ); )

((1 ) , )   ((1 ) , (1 ) (1; , )))
1

V B p V B p V B p

u Zy Zyu Zy Zy B p

π π π π

β θ θ
θ θ β π π

β

∞⎡ ⎤⎢ ⎥⎣ ⎦
−

= − + − +
−

. 

Our arguments have produced the following analytical characterization of ( ,1,1, ; , )V B pζ π : 

1 2

((1 ) , )                                     if (1; , )
1

max ( ; ), ( ; ),..., ( ; )   if (1; , ) (1; , ),  1
( ,1,1, ; , ) ((1 ) , )                                 if (

1

u y y B b p

V B V B V B b p B B p
V B p u Zy Zy b

θ θ
π

β

π π π π π ζ π
ζ π θ θ

β

∞

−
≤

−
⎡ ⎤ < ≤ ≤ −⎢ ⎥⎣ ⎦

= −
−

1; , ) (1; , ),  1

((1 ) , )                                 if (1; , )
1

p B B p

u Zy Zy B p B

π π π ζ

θ θ
π

β

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪ < ≤ − <⎪⎪⎪⎪⎪ −⎪⎪ <⎪⎪ −⎪⎩

 

Some of the different possibilities for optimal government strategies — which vary with the 

initial debt — are illustrated in figure 7. 
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Optimal debt policy with self-fulfilling crises 

 

Figure 7 

 

4. Gambling for redemption without self-fulfilling crises 

Suppose now that 0a =  and 0π= .  That is, no self-fulfilling crises are possible, but the 

private sector is in a recession and faces the probability p , 1 0p> > , of recovering in every 

period.  We can also interpret this as the limiting case in which crises can occur, but the 

government and the international bankers assign probability 0π =  to them. 

(1; , )B p π

(1; , )b p π  

0  1 2 3  4  t  

tB  
always default 

crisis zone 
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Uncertainty tree with recession path highlighted 

 
Figure 8 

In this section, we argue that the optimal government policies is to increase its debt as 

long as 0a = .  In fact, if the country is unlucky in the sense that 0a =  long enough, the 

government may choose to eventually default.  Consequently, the upper limits on the debt, 

(0; ,0)B p  and (1; ,0)B p  are crucial for our analysis.   Notice that, since 

(1; ,0) (1;0,0)B p B= , 

because the probability of recovery does not matter once it has occurred, we have already 

derived a condition that determines (1; ,0)B p .   

( )

((1 ) , (1; ,0)) ((1 ) , (1 ) (1; ,0))

   ((1 ) , (1 ) (1; ,0)) ((1 ) , )
1

u Zy Zy B p u y y B p

u y y B p u Zy Zy

θ θ β θ θ β
β

θ θ β θ θ
β

− + − − − −

= − − − − −
−

. 

To determine (0; ,0)B p , we suppose that the government runs up its debt to some level 

(0; ,0)B B p≤ , borrows (0; ,0) ' (1; ,0)B p B B p< ≤  at price pβ , then repays the next period if 

1a =  

1a =  

1a =  

1a =  

1a =  

1a =  
0a =  

 0a =  

0a =  
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the private sector recovers and on defaults otherwise.  The value of borrowing (1; ,0)B p  at price 

pβ , repaying the current debt, and then repaying in the next period if the private sector recovers 

and on defaulting otherwise is 

( ,0,1; ,0) ((1 ) , (1; ,0) )

((1 ) , ) ((1 ) , )   (1 )
1 (1 ) (1 )(1 (1 ))

   ((1 ) , (1 ) (1; ,0))
1

nV B p u Ay Ay pB p B

u AZy AZy pu Zy Zyp
p p

p u y y B p

θ θ β

θ θ β θ θ
β

β β β

β
θ θ β

β

= − + −

⎛ ⎞− − ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ − − −
−

 

The value of borrowing (1; ,0)B p  at price pβ  and then defaulting is 

( ,0,1; ,0) ((1 ) , (1; ,0))

((1 ) , ) ((1 ) , )   (1 )
1 (1 ) (1 )(1 (1 ))

   ((1 ) , )
1

dV B p u AZy AZy pB p

u AZy AZy pu Zy Zyp
p p

p u Zy Zy

θ θ β

θ θ β θ θ
β

β β β

β
θ θ

β

= − +

⎛ ⎞− − ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ −
−

. 

The equation that determines (0; ,0)B p  is, therefore, 

( (0; ,0),0,1; ,0) ( (0; ,0),0,1; ,0)n dV B p p V B p p=  

((1 ) , (1; ,0) (0; ,0)) ((1 ) , (1 ) (1; ,0))
1

   ((1 ) , (1; ,0)) ((1 ) , )
1

pu Ay Ay pB p B p u y y B p

pu AZy AZy pB p u Zy Zy

β
θ θ β θ θ β

β
β

θ θ β θ θ
β

− + − + − − −
−

= − + + −
−

. 

The government may, in fact, choose a lower level of the debt than (1; ,0)B p , but 

(0; ,0)B p  is the highest level of the debt 'B  at which the government can borrow at price 

( ', ; , )q B s p π β= .   Indeed, if the constraint ' (1; ,0)B B p≤  does not bind, we can calculate the 

optimal 'B  by solving 

max ((1 ) , ' )

((1 ) , ) ((1 ) , )   (1 )
1 (1 ) (1 )(1 (1 ))

   ((1 ) , (1 ) ')
1

u Ay Ay pB B

u AZy AZy pu Zy Zyp
p p

p u y y B

θ θ β

θ θ β θ θ
β

β β β

β
θ θ β

β

− + −
⎛ ⎞− − ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ − − −
−

. 
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The first order condition is  

((1 ) , ' ) ((1 ) , (1 ) ')g gu Ay Ay pB B u y y Bθ θ β θ θ β− + − = − − − . 

Letting ˆ '( )B B  be the solution to this problem, 

ˆ'( ) min[ '( ), (1; ,0)]B B B B B p= . 

There are two cases: 

1. The government chooses to never violate the constraint (0; ,0)B B p≤ , and the optimal debt 

converges to (0; ,0)B p  if 0a =  for sufficiently long. 

2. The government chooses to default in T  periods if 0a =  sufficiently long. 

The crucial parameter in determining which of these two cases the economy is in is the 

default penalty factor Z .  If Z  is sufficiently low, the government will choose to never default.  

If Z is close to 1, it will optimally choose to default after a sufficiently long number of periods in 

which 0a = .  

 

4.1. Equilibrium with no default 

Let us first consider the case where government chooses to never violate the 

constraint (0; ,0)B B p≤ .  For this to be an equilibrium, two things must be true:   

1. The expected discounted value of steady state utility at (0; ,0)B B p=  must be higher than 

that of defaulting after bankers have purchased ' (0; ,0)B B p=  at price β , 
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((1 ) , (1 ) (0; ,0))

((1 ) , (1 ) (0; ,0)) ((1 ) , (1 ) (0; ,0))   (1 )
1 (1 ) (1 )(1 (1 ))

   ((1 ) , (1 ) (0; ,0))
1

   ((1 ) , (0; ,0))

   

u Ay Ay B p

u Ay Ay B p pu y y B pp
p p

p u y y B p

u AZy AZy B p

θ θ β

θ θ β β θ θ β
β

β β β

β
θ θ β

β

θ θ β

β

− − −
⎛ ⎞− − − − − − ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ − − −
−

≥ − +

+
((1 ) , ) ((1 ) , )(1 )

1 (1 ) (1 )(1 (1 ))

   ((1 ) , )
1

u AZy AZy pu Zy Zyp
p p

p u Zy Zy

θ θ β θ θ
β β β

β
θ θ

β

⎛ ⎞− − ⎟⎜− + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ −
−

. 

2. The expected discounted value of steady state utility at (0; ,0)B B p=   must be higher than 

that of running up the debt one more time at price pβ , repaying if the private sector recovers, 

and defaulting otherwise, 

((1 ) , (1 ) (0; ,0))

((1 ) , (1 ) (0; ,0)) ((1 ) , (1 ) (0; ,0))   (1 )
1 (1 ) (1 )(1 (1 ))

   ((1 ) , (1 ) (0; ,0))
1

   ((1 ) , '( (0; ,0)) (

u Ay Ay B p

u Ay Ay B p pu y y B pp
p p

p u y y B p

u Ay Ay pB B p B

θ θ β

θ θ β β θ θ β
β

β β β

β
θ θ β

β

θ θ β

− − −
⎛ ⎞− − − − − − ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ − − −
−

≥ − + − 0; ,0))

((1 ) , ) ((1 ) , )   (1 )
1 (1 ) (1 )(1 (1 ))

   ((1 ) , (1 ) '( (0; ,0)))
1

p

u AZy AZy pu Zy Zyp
p p

p u y y B B p

θ θ β θ θ
β

β β β

β
θ θ β

β

⎛ ⎞− − ⎟⎜+ − + ⎟⎜ ⎟⎜ ⎟⎜ − − − − −⎝ ⎠

+ − − −
−

, 

where ˆ'( ) min[ '( ), (1; ,0)]B B B B B p= . 

If these two conditions are satisfied, the optimal government policy is the solution to the 

dynamic programming problem 

1 1( , ) max ((1 ) , ' ) ( ', ')a aV B a u A y A y B B EV B aθ θ β β− −= − + − +  

s.t. (0; ,0)B B p≤  

We write Bellman’s equation explicitly as  
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( ,0) max ((1 ) , ' ) (1 ) ( ',0) ( ',1)V B u Ay Ay B B p V B pV Bθ θ β β β= − + − + − +  

( ,1) max ((1 ) , ' ) ( ',1)V B u y y B B V Bθ θ β β= − + − + . 

The first order condition is 

1 1((1 ) , ' ) ( ', ')a a
g Bu A y A y B B EV B aβ θ θ β β− −− + − = , 

while the envelope condition is 

1 1( , ) ((1 ) , ' )a a
B gV B a u A y A y B Bθ θ β− −=− − + − . 

The envelope condition implies ( , )V B a  is decreasing in B . A standard argument — that the 

operator on the space of functions defined by Bellman’s equations maps concave value functions 

into concave value functions — implies that ( , )V B a  is concave in B .   

Now, using the first order condition, we can use standard arguments to show that the 

policy function for debt '( , )B B a  is increasing in B  while the policy function for government 

spending ( , )g B a  is decreasing.  Using our assumption that 

((1 ) , ) ((1 ) , )g gu Ay Ay b u y y bθ θ θ θ− − > − −  

we can argue that '(0) 0B >  and that it is impossible for '( )B B B=  unless the constraint 

(0; ,0)B B p≤  binds, which implies that '( ,0)B B B> .  We have already argued that 

'( ,1)B B B= .  Figure 9 illustrates some optimal government strategies as functions of the initial 

debt. 
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Optimal debt policy gambling for redemption when (0; ,0)B B p≤  binds 

 
Figure 9 

4.2. Equilibrium with eventual default 

Let us now consider the case where the government chooses to violate the 

constraint (0; ,0)B B p≤  with its sale of debt in period T , defaulting in period 1T +  unless the 

private sector recovers.  The optimal government policy along the branch of the uncertainty tree 

in which 0ta =  is the solution to the finite horizon dynamic programming problem 

1
1 1 1

((1 ) , (1 ) ))
( ,0) max ((1 ) , ) (1 ) ( ,0)

1
t

t t t t t t
u y y B

V B u Ay Ay B B p V B p
θ θ β

θ θ β β β
β

+
+ + +

− + −
= − + − + − +

−

1s.t. (1; ,0) (0; ,0)TB p B B p+≥ ≥  

(0; ,0)TB B p≤ . 

We solve this by backwards induction with the terminal value function 

1

1

( ,0) max ((1 ) , )
((1 ) , (1 ) ))((1 ) , ))                 (1 )

1 1

T T T T

T

V B u Ay Ay pB B
u y y Bu Zy Zyp p

θ θ β

θ θ βθ θ
β β

β β

+

+

= − + −

− + −−
+ − +

− −

 

1s.t.  (1; ,0)TB B p+ ≤  

(1; , )B p π

(0; , )B p π  

0  1 2 3  4  t  

tB  
always default 

default unless 1a =  
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We then choose the value of T  for which 0 0( ,0)V B  is maximal.  As long the constraint 

1 (0; ,0)TB B p+ ≥  binds, we can increase the value of 0 0( ,0)V B  by increasing T . 

 

Optimal debt policy gambling for redemption when (0; ,0)B B p≤  does not bind 

Figure 10 

In figure 10, we illustrate two possibilities, which depend on 0B .  In one 1T = , and in the other 

2T = . 

The algorithm for calculating the optimal policy on a grid of bond levels is a 

straightforward application of policy function iteration.  Since we work backwards from the 

period in which the government borrows at price pβ  and will default in the next period unless a 

recovery of the private sector occurs, let us reverse our labeling of the value functions and define  

0 ( ,0) max ((1 ) , ' )
((1 ) , )) ((1 ) , (1 ) '))                 (1 )

1 1

V B u Ay Ay pB B
u Zy Zy u y y Bp p

θ θ β

θ θ θ θ β
β β

β β

= − + −

− − + −
+ − +

− −

 

s.t.  (0; ,0) (1; ,0)B p B B p≤ ≤ . 

The steps of the algorithm are 

(1; , )B p π

(0; , )B p π  

0  1 2 3  4  t  

tB  
always default 

default unless 1a =  
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1. Solve for the value function 0 ( ,0)V B  and the policy function 0 '( )B B  on a grid of bonds B  on 

the interval [ , (0; ,0)]B B p .   We can set the lower limit B  equal to any value, including a 

negative value.  In an application with a given initial stock of debt, we could set 0B B= .  We 

have already solved this problem analytically.  The solution is ˆ'( ) min[ '( ), (1; ,0)]B B B B B p=  

unless '( ) (0; ,0)B B B p< , in which case 0 '( ) (0; ,0)B B B p= .  Consequently,  

0
ˆ'( ) max (0; ,0), min[ '( ), (1; ,0)]B B B p B B B p⎡ ⎤= ⎣ ⎦ . 

It turns out that the values of B for which '( ) (0; ,0)B B B p<  are those for which it is not optimal 

to set 0T = . 

2. Let 0t = , and set 0 (0; ,0)B B p= . 

3. Solve for the value function 1( ,0)tV B+  and the policy function 1 '( )tB B+  in Bellman’s equation 

1
((1 ) , (1 ) ))( ,0) max ((1 ) , ' ) (1 ) ( ',0)

1t t
u y y BV B u Ay Ay B B p V B p θ θ β

θ θ β β β
β+

− + −
= − + − + − +

−
.  Let 

tB  be the largest value of B  for which 1( ,0) ( ,0)t tV B V B+ ≥ . 

4. Repeat step 3 until tB B= . 

Let T  be such that TB B= .  We can prove that 1 2 1 (0; ,0)T TB B B B B p− −< < < < < .  

Our algorithm divides the interval [ , (0; ,0)]B B p  into subintervals 1[ , )TB B − , 1 2[ , )T TB B− − ,…, 

1[ , (0; ,0)]B B p .  If the initial capital stock 0B  is in the subinterval 1[ , ]t tB B − , then the optimal 

government policy is to increase B , selling debt  B , (0; ,0) (1; ,0)B p B B p< ≤ , in period 1t − , 

and defaulting in period t  unless the private sector recovers.  The optimal sequence of debt is 

0B , 1 0'( )tB B− , 2 1 0'( '( ))t tB B B− − … , 0 1 1 0( ( ( '( ))))tB B B B− . 

5. Results for the general model 

For the general model in which 0 0a = , 1 0p> > , and 1 0π> > , figure 11 illustrates 

some of the distinctly different possible patterns of equilibrium dynamics.  
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Four possible phase diagrams in general model 

 
Figure 11 

When debt is low enough, (0; , )B b p π≤ , the government necessarily runs up its debt, 

gambling for redemption.  As debt becomes larger, however, the probability of a crisis increases 

and the price of bonds falls, as in figure 6.  For high enough levels of debt, the benefits of 

running down debt to avoid a self-fulfilling crisis may dominate the benefits of gambling for 

redemption.  For 0π >  small enough, this never happens, and the government eventually 

defaults unless the private sector recovers to 1a = .   

There are also intermediate cases (think of a combination of cases 1 and 3) in which there 

is some level of debt high enough so that gambling happens above it, while debt goes down for 

levels below it. In fact, these intermediate cases happen to play a prominent role in our 

quantitative exercises. 

 

(0)b  (1)b  (0)B  (1)B  B  

case 1 

case 2 

case 3 

case 4 
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5.1. Calibration of the model and quantitative results 

In order to solve for the equilibrium we need to choose a functional form for the utility function. 

We choose the following specification: 

( )( , )
g gcu c g

ρρ

γ
ρ ρ

−
= +  

The parameters we choose for our benchmark scenario are the following: 

 

Table 1: Parameter values in the Benchmark scenario 

Parameter Value Target 

y  100 Normalization 

A 0.90 Average output loss 

Z 0.95 As in Cole and Kehoe (1996) 

P 0.20 Average recovery in 5 years 

β  0.96 Real interest rate of safe bonds 4% 

π  0.03 Real interest rate in crisis zone 7% 
γ  0.50 g  is 40% GDP when 10B =   

θ  0.4041 Government revenues as a share of output 
ρ  -1.0 Standard in the literature 

g  28 Assumed 

 

 We have chosen as a benchmark the steady state of an economy that in normal times has 

government expenditures of 40% GDP and a stock of debt of 60% GDP, which given an average 

maturity of 6 years implies that every year the government has to access markets to refinance 

debt for a value of 10% of GDP. The choice of 28g =  is arbitrary, and can be interpreted as the 

level of government expenditures that are committed and can’t be changed easily. Clearly, the 

larger this value the more costly it is to decrease government expenditure and the larger the 

incentive to gamble for redemption. 
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 Notice that we are abstracting from issues related to the maturity structure of government 

debt,1 and that there is no direct mapping between the average maturity of the stock of debt and 

the amount of debt that has to be refinanced every period. Suppose that every period, the 

government sells 310 of bonds, divided between 300 1 year bonds and 10 30 year bonds.  Then 

the government has total debt of 300 (30)10 600+ = . The average maturity is 

300(30 29 ... 1) / 30 300 150(30) 300 8
600 600

+ + + + +
= = . 

Every period the fraction of debt that becomes due is 310 0.5167
600

= . 

Suppose, in contrast, the government sells 40 15 year bonds every period.  Then the government 

has debt of (15)40 600= , and the average maturity is 15 14 ... 1 8
2

+ + +
= , but every period the 

fraction of debt that becomes due is 40 0.0667
600

= . Same average maturity implies very different 

needs of refinancing every period. 

 The probability of a recovery implies that on average a recovery happens in 5 years. 

Some countries could recover very fast, while long-lasting recessions as in Japan are also 

possible. The choice of a benchmark 0.03π =  is intended to reflect the average values of the risk 

premia of countries in trouble in the Eurozone.  

 Now we turn to our quantitative exercises. Consider our benchmark economy. The 

thresholds that characterize the optimal policy and the optimal debt function are plotted in Figure 

12.  

 Here the lower threshold is slightly above 10%, and default would happen for sure for 

levels of debt above 32%. In between there is the crisis zone, where the risk premium is three 

percentage points, and the optimal policy implies reducing the debt in a finite number of periods 

to avoid the extra cost of financing. This is a simplified version of the Cole and Kehoe (2000) 

environment.  

 What would be the impact of a recession in this situation? How the situation changes 

when facing a recession is pictured in Figure 13.  

 

                                                 
1 See Arellano and Ramanarayanan (2012), Broner et al (2012) and Buera and Nicolini (2004) for discussions of the 
determinants of the maturity of government bonds. 
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 The benchmark economy in normal times 
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Figure 12 

Notice that when the recession hits both the thresholds and the policy function change. 

First, both thresholds decrease. Therefore, levels of debt (say 10% of GDP in normal times) that 

were a steady state and perfectly sustainable in normal times now imply that the economy is 

vulnerable to a crisis and has to pay a risk premium. Also, high levels of debt (say 30%·of GDP 

in normal times) that would have been sustainable as long as there was no panic and the 

government had access to refinancing become unsustainable and the government finds it optimal 

to default immediately.  

 The impact of a recession 
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Figure 13 
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 The policy function also changes significantly. For safe levels of debt the government 

finds it optimal to increase debt until the lower threshold (0)b . For intermediate levels of debt 

the government should run down the debt to avoid paying the risk premium. However for levels 

of debt high enough the government would choose to gamble for redemption. If recovery does 

not happen, then debt would raise until reaching the upper threshold (0)B . Notice that even if 

countries were hit by the recession in exactly the same way and the probability of a panic was the 

same, still small differences in initial levels of debt would imply radically different paths of debt. 

In addition, of course, if the severity of a recession or the probability of a recovery differed 

across countries then we would observe different responses. 

 

Policy implications 

Suppose we are in case 1 (the benchmark economy in normal times).  Then, if the realization of 

the sunspot variable signals that a crisis will take place that period, the provision of a loan from a 

third party at an interest rate higher than  

1 1
( (1 )(1 ))p pβ π

−
+ − −

 

can prevent a crisis but leave the government in case 1. 

 As in Cole and Kehoe (1996) this is our interpretation of the U.S. President Bill Clinton’s 

1995 loan package for Mexico. When an economy is in the crisis zone and finds it optimal to 

reduce its level of debt, a panic would immediately trigger a default. However, the intervention 

of a third party willing to provide the necessary refinancing would prevent the panic from 

becoming self-fulfilling.  

However, suppose that we are in case 1 or case 2.  Then, the provision of a loan from a 

third party at an interest rate lower than 

1 1
( (1 )(1 ))p pβ π

−
+ − −

 

can push the government into case 3 or 4. The provision of funding at interest rates lower than 

those implied by market forces might imply that the optimal policy calls for gambling for 

redemption. In such an environment we could interpret the apparent failure of European Union 

rescue packages to induce Greece entering a path to sustainable reduced levels of debt. 
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In general, any policy of a third party that lowers the cost of default or lowers the interest 

rate on government debt increases the government’s incentive to gamble for redemption. In order 

to illustrate that, we provide the following numerical experiment.  

Consider again the situation of our benchmark economy. Suppose now that a third party 

is willing to provide subsidized lending. In particular, we assume that a third party is willing to 

lend at the interest rate implied by the absence of panics. That would imply access to credit at 

0.04r =  even inside the crisis zone.  

 Figure 14 displays the change in the optimal debt policy associated to such an 

opportunity. First, it implies an increase in the upper threshold, making default less likely. 

However, it triggers a change in the optimal debt policy implying that for high levels of debt the 

optimal response is to increase debt until it reaches the upper threshold.  

Notice that this change has happened even in good times. Providing the possibility of 

refinancing debt at rates below market might trigger a path of increasing indebtness, even in the 

Cole and Kehoe (2000) environment. 

Optimal debt policy in case of bailout at rates below market in normal times 
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Figure 14 

If subsidized lending would happen during a recession, then the incentives to gamble for 

redemption are much stronger, as shown in Figure 15. 
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Optimal debt policy in case of bailout at rates below market in recession times 
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Figure 15 

Notice how access to cheaper refinancing allows the government to run up its debt, 

gambling for redemption until a higher debt threshold. 

 

Sensitivity analysis 

In our model environment the probability of a panic, and hence the corresponding risk premium 

are exogenous and arbitrarily chosen. In order to understand better its impact on optimal debt 

policy we compare the optimal debt policy under different levels of this value. We compare our 

benchmark, 0.03π = , with both a smaller and a larger probability of panics (0.01 and 0.05 

respectively). The results are displayed in Figure 16. 
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Impact of the probability of panics 
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Figure 16 

 As expected the lower the probability of a panic the higher the upper threshold and the 

closer the policy function to the 45º line.  

 

Concluding remarks 

We have provided a theory of how prolonged recessions of uncertain recovery affect the optimal 

debt policy when an economy is vulnerable to panics. We show that gambling for redemption 

(increasing the level of debt in hope of a near recovery) is more than a theoretical possibility. In 

fact, it is reasonable to expect this kind of behavior in a simple quantitative exercise. 

This is important for understanding the design of policy. As in Cole and Kehoe (2000) 

our results suggest that providing liquidity at market rates to an economy that is subject to a 

panic is a way to avoid default. However, the provision of liquidity at subsidized rates might 

induce the borrowing party to gamble for redemption hoping for a recovery.  

In our exercise panics are exogenously driven by a sunspot variable. It would be desirable 

to have a better understanding of what drives panics, and whether investor’s sentiment can truly 

be linked to fundamentals.  

In our analysis we have abstracted from Keynesian features. In our theoretical 

environment government expenditure only had a role as providing direct utility. If the probability 
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of an economic recovery depended directly on government expenditure, then the incentives to 

gamble for redemption would even be stronger.  

Another feature we have left out of our analysis is what happens in an environment where 

the expectations of the government and international investors are not aligned. Suppose an 

environment where the government is more optimistic than the markets (see Cohen and Villemot 

(2008)), either because its forecast of the probability of a recovery is more favorable or because 

it has a lower valuation of the probability of a panic. In this environment, a government more 

optimistic than the market would tend to have lower borrowing because it would perceive that 

the market is charging too high an interest rate.  

 



38 

6. References 

Aguiar, M. And G. Gopinath (2006), “Defautable debt, interest rates and the current account”, 
Journal of International Economics, 69, 64-83. 

Araujo, A., M. Leon and R. Santos (2011), “Welfare analysis of monetary regimes with 
defaultable debt”, mimeo. 

Arellano, C. (2008), “Default Risk and Income Fluctuations in Emerging Economies,” American 
Economic Review, 98, 690–712. 

Arellano, C. and A. Ramanarayanan (2012), “Default and the Maturity Structure in Sovereign 
Bonds”, Journal of Political Economy, 120, 187-232. 

Broner, F., G. Lorenzoni, and S. Schmukler (2012), “Why Do Emerging Economies Borrow 

Short Term?”, Journal of the European Economic Association, forthcoming. 

Buera, F. and J.P. Nicolini. 2004. “Optimal Maturity of Government Debt without State 

Contingent Bonds.” Journal of Monetary Economics, 51, 531–54. 

Calvo, G. (1988), “Servicing the Public Debt: The Role of Expectations,” American Economic 
Review, 78, 647–661. 

Chamley, C. P. and B. Pinto (2011), “Why Bailouts Tend Not To Work:  An Example Motivated 
by Greece 2010,” The Economists’ Voice, 8, article 3. 

Cohen, D. and S. Villemot (2008),. “Self-fulfilling and Self-enforcing Debt Crises,” CEPR 

Discussion Papers 6718. 

Cole, H. L. and T. J. Kehoe (1996), “A Self-Fulfilling Model of Mexico’s 1994–1995 Debt 
Crisis,” Journal of International Economics, 41, 309–330. 

Cole, H. L. and T. J. Kehoe (2000), “Self-Fulfilling Debt Crises,” Review of Economic Studies, 
67, 91–116. 

Morris, S. and H. S. Shin (1998), “Unique Equilibrium in a Model of Self-Fulfilling Currency 
Attacks,” American Economic Review, 88, 587–596. 

Reinhart, C. M. and K. S. Rogoff (2009), This Time is Different:  Eight Centuries of Financial 
Follies, Princeton University Press. 



39 

Appendix: The algorithm for computing an equilibrium in the general model 

The algorithm computes the four debt thresholds, the value function, and the policy function. 

1. Compute the value function ( )1, , ,V B a z ζ−  of being in the default state, where 0B =  and 

1 1z− = : 

The value function in normal times, where 1a = , is 

( ) ( ) ( )0,1,1, 1 , 0,1,1,V u Zy Zy Vζ θ θ β ζ= − +⎡ ⎤⎣ ⎦ , 

which is just a constant: 

( ) ( )10,1,1, 1 ,
1

V u Zy Zyζ θ θ
β

= −⎡ ⎤⎣ ⎦−
. 

Similarly, in a recession, where 0a = ,  

( ) ( ) ( ) ( ) ( )0,0,1, 1 , 0,1,1, 1 0,0,1,V u AZy AZy pV p Vζ θ θ β ζ β ζ= − + + −⎡ ⎤⎣ ⎦ , 

which is also just a constant: 

( ) ( ) ( ) ( )( )( ) ( )10,0,1, 1 , 1 ,
1 1 1 1 1

pV u AZy AZy u Zy Zy
p p

βζ θ θ θ θ
β β β

= − + −⎡ ⎤ ⎡ ⎤⎣ ⎦ ⎣ ⎦− − − − −
 

Notice that theses values are independent of the sunspot ζ . 

2. Guess initial values for the thresholds (0)b , (1)b , (0)B , (1)B , where 

(0) (1) (0) (1)b b B B< < < .  (We can modify the algorithm to calculate an equilibrium where 

(0) (0) (1) (1)b B b B< < < .) 

3. Perform value function iteration on a finite grid of values for debt to compute the value 

function in normal times, where 1a = : 

Guess an initial value for the value functions if we are in good times and the government has 

not defaulted in the past: ( ),1,0,V B ζ . Then: 

3.1. For low values of initial debt (1)B b≤ : 
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ζ∀  the value function is: ( ) ( ) ( ){ }1 2,1,0, max ,1,0, , ,1,0,V B V B V Bζ ζ ζ= , where 

1 2(), ()V V  are defined as: 

( ) ( ) ( ){ }1 ' (1)
,1,0, max 1 , ' ',1,0, '

B b
V B u y y B B V Bζ θ θ β β ζ

≤
= − + − +⎡ ⎤⎣ ⎦ . 

( )
(

( ) ( ) ( ) ( ) ( ){ }2 ' (1), (1)
,1,0, max 1 , 1 ' 1 ',1,0, ' 0,1,1, '

B b B
V B u y y B B V B Vζ θ θ β π β π ζ βπ ζ

⎤∈ ⎦
= − + − − + − +⎡ ⎤⎣ ⎦

 

3.2. For intermediate values of initial debt ( (1), (1)B b B ⎤∈ ⎥⎦ : 

If 1ζ π> −  then ( ) ( ),1,0, 0,1,1,V B Vζ ζ= . 

Else if 1ζ π≤ −  then ( ) ( ) ( ){ }1 2,1,0, max ,1,0, , ,1,0,V B V B V Bζ ζ ζ= , with 1 2(), ()V V  

defined as above. 

3.3. For high values of initial debt (1)B B> :  ( ) ( ),1,0, 0,1,1,V B Vζ ζ= , ζ∀ . 

3.4. If ( ) ( )
,

max ,1,0, ,1,0,
B

V B V B
ζ

ζ ζ ε− > , then ( ) ( ),1,0, ,1,0,V B V Bζ ζ=  and go to 3.1. 

Else, go to 4. 

4. Perform value function iteration on a finite grid of values for debt to compute the value 

function in a recession, where 0a = . 

Guess an initial value for the value functions if we are in a recession and the government has 

not defaulted in the past: ( ),0,0,V B ζ . Then: 

4.1. For low values of initial debt, where (0)B b≤ , the value function is: 

( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0,0, max ,0,0, , ,0,0, , ,0,0, , ,0,0,V B V B V B V B V Bζ ζ ζ ζ ζ= , 

where 1V , 2V , 3V , 4V  are defined as 

( )
( )

( ) ( ) ( )1 ' (0)

1 , '
,0,0, max

  ',1,0, ' 1 ',0,0, 'B b

u Ay Ay B B
V B

pV B p V B

θ θ β
ζ

β ζ β ζ≤

⎧ ⎫− + −⎡ ⎤⎪ ⎪⎣ ⎦= ⎨ ⎬
+ + −⎪ ⎪⎩ ⎭

 

( )
(

( ) ( )( )( )
( ) ( ) ( ) ( )( ) ( )

2 ' (0), (1)

1 , 1 1 '
,0,0, max

',1,0, ' 1 0,0,1, ' 1 1 ',0,0, 'B b b

u Ay Ay p p B B
V B

pV B p V p V B

θ θ β π
ζ

β ζ β π ζ β π ζ⎤∈ ⎦

⎧ ⎫⎡ ⎤− + + − − −⎪ ⎪⎣ ⎦= ⎨ ⎬
+ + − + − −⎪ ⎪⎩ ⎭
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( )
(

( ) ( )
( ) ( ) ( )

( ) ( ) ( )( ) ( )
3 ' (1), (0)

1 , 1 '

,0,0, max 0,1,1, ' 1 ',1,0, '

1 0,0,1, ' 1 1 ',0,0, '
B b B

u Ay Ay B B

V B p V p V B

p V p V B

θ θ β π

ζ β π ζ β π ζ

β π ζ β π ζ
⎤∈ ⎦

⎧ ⎫− + − −⎡ ⎤⎣ ⎦⎪ ⎪⎪ ⎪= + + −⎨ ⎬
⎪ ⎪
+ − + − −⎪ ⎪⎩ ⎭

( )
(

( ) ( )
( ) ( ) ( ) ( ) ( )4 ' (0), (1)

1 , 1 '
,0,0, max

0,1,1, ' 1 ',1,0, ' 1 0,0,1, 'B B B

u Ay Ay p B B
V B

p V p V B p V

θ θ β π
ζ

β π ζ β π ζ β ζ⎤∈ ⎦

⎧ ⎫− + − − +⎡ ⎤⎪ ⎪⎣ ⎦= ⎨ ⎬
+ + − + −⎪ ⎪⎩ ⎭

 

 

4.1. For intermediate values of initial debt ( (0), (0)B b B ⎤∈ ⎥⎦ : 

If 1ζ π> −  then ( ) ( ),0,0, 0,0,1,V B Vζ ζ= . 

 Else if 1ζ π≤ −  then 

( ) ( ) ( ) ( ) ( ){ }1 2 3 4,0,0, max ,0,0, , ,0,0, , ,0,0, , ,0,0,V B V B V B V B V Bζ ζ ζ ζ ζ= , with 

1 2 3 4(), (), (), ()V V V V  defined as above. 

 

4.2. For high values of initial debt (0)B B> :  

( ) ( ),0,0, 0,0,1,V B Vζ ζ= , ζ∀ . 

 4.4. If ( ) ( )
,

max ,0,0, ,0,0,
B

V B V B
ζ

ζ ζ ε− > , then ( ) ( ),0,0, ,0,0,V B V Bζ ζ=  and go to 

4.1. Else, go to 5. 

 

 

5. Update the threshold values.  

 

 5.1. Choose (0)newb  to be the highest point in the debt grid for which the following 

condition is satisfied: 

( ) ( ) ( ) ( ){ } ( )1 , 0,1,0,0 1 0,0,0,0 0,0,1,u Ay Ay B pV p V Vθ θ β β ζ− − + + − ≥⎡ ⎤⎣ ⎦  

 

 5.2. Choose (1)newb  to be the highest point in the debt grid for which the following 

condition is satisfied: 
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( ) ( ){ } ( )1 , 0,1,0,0 0,1,1,u y y B V Vθ θ β ζ− − + ≥⎡ ⎤⎣ ⎦  

 

 5.3. Choose (0)newB  to be the highest point in the debt grid for which the following 

condition is satisfied: 

( ) ( ) ( ) ( ) ( ) ( ){ },0,0,0 1 , ( ') ' ,0,0,0 0,1,1, ' 1 0,0,1, 'V B u ZAy ZAy q B B B pV p Vθ θ β ζ β ζ≥ − + + + −⎡ ⎤⎣ ⎦
 

where ( ') (1 )q B β π= −  if ( )' , 0,0,0 (0)B B B≤  and ( ') (1 )q B pβ π= −  if ( )' , 0,0,0 (0)B B B> . 

 

 5.4. Choose (1)newB  to be the highest point in the debt grid for which the following 

condition is satisfied: 

( ) ( ) ( ) ( ){ },1,0,0 1 , (1 ) ' ,1,0,0 0,1,1, 'V B u Zy Zy B B Vθ θ β π β ζ≥ − + − +⎡ ⎤⎣ ⎦  

 

 5.5. If (0) (0)newb b ε− >  or (1) (1)newb b ε− >  or (0) (0)newB B ε− >  or 

(1) (1)newB B ε− > , then (0) (0), (1) (1), (0) (0), (1) (1)new new new newb b b b B B B B= = = =  and go 

to 3. Else, exit. 

 
 


