## EASTER BUSH SCIENCE OUTREACH CENTRE <br> -




## What are microorganisms?

## microorganism

tiny
a living thing


Bacteria


Fungi


Viruses

## There's trouble on the farm!




## Bacteria Culture



## We will grow the bacteria for a few hours at

## We need your help!

- What caused the illness?


## Bacteria Identification- rod or cocci?



Rod


Cocci (round)

Bacteria come in all shapes and sizes. This can sometimes help us tell them apart.

## Gram Staining

# Gram Staining 

## Biotechnology Explorer ${ }^{\text {TM }}$

## BIO RAD

## Gram staining

## GRAM-NEGATIVE

## GRAM-POSITIVE



Gram staining is a technique scientists use tell identify different bacteria.

## Bacteria Identification- Gram + or - ?



Gram positive


Gram negative

## Bacteria Identification



Match the what you see down microscope with the descriptions.

## Bacillus subtilis

Bacillus subtilis bacteria are rodshaped and Gram-positive, so they stain purple in a Gram test.
B.subtilis often grows in long chains.

Streptococcus equi Streptococcus equi bacteria are round (cocci) and Gram-positive, so they stain purple in a Gram test.
S.equi grows in long chains, but these are often broken up during staining so they may appear as single cells.

## Salmonella

Salmonella bacteria are rod-shaped and Gram-negative, so they stain pink in a Gram stain test.

They often are seen growing separately.
$\qquad$
$\qquad$

## Farm Detectives

Bacteria Identification

|  | Slide 1 | Slide 2 | Slide 3 | slide 4 |
| :--- | :--- | :--- | :--- | :--- |
| Draw what you see |  |  |  |  |
| What shape is it? |  |  |  |  |
| Is it Gram positive <br> or Gram nesative? |  |  |  |  |

Write the number of slide that matches the description:
Salmonella

| Salmonella bacteria are rod-shaped |
| :---: |
| and Gram-negative, so they stain |
| pink in a Gram stain test. |
| They often are seen growing |
| separately. |


| Bacillus subtilis bacteria are rod- |
| :---: |
| shaped and Gram-positive, so they |
| stain purple in a Gram test. |
| B.subtilis often grows in long |
| chains. |


| Staphylococcus aureus bacteria |
| :---: |
| are round (cocci) and Gram- |
| negative, so they stain pink in a |
| Gram test. |
| S.aureus grows in clusters like |
| bunches of grapes. |

## Record your answers in your worksheet.



Bacillus subtilis


## Streptococcus equi

THE UNIVERSITY of EDINBURGH
Easter Bush
Science Outreach Centre


Staphylococcus aureus


## Salmonella

# Did you identify the bacteria? <br> Farm Detectives 

Bacteria Identification

|  | Slide 1 | Slide 2 | Slide 3 | slide 4 |
| :--- | :--- | :--- | :--- | :--- |
| Draw what you see |  |  |  |  |
| What shape is it? | cocci |  |  |  |
| Is it Gram positive <br> or Gram negative? | positive | rod | rod | cocci |

Write the number of slide that matches the description:


THE UNIVERSTTY ofEDINBURGH
Easter Bush
Science Outreach Centre


THE UNIVERSITY of EDINBURGH
Easter Bush
Science Outreach Centre

## What caused our cow's illness?

## Bacteria on slide 2 came from our sick cows.



## The diagnosis

- Salmonellosis
- Caused by Salmonella bacteria
- Infects:



## and humans!



## We need your help!

- What caused the illness?
- Where did it come from?
- How did it spread?


## Track the Disease Spread

Farms and Farmers


## Public Health Investigators



## Which farmers have sick cows?



Use the farmers to help vou.

I buy all my dairy cattle from Cows-4-Less, because they have the best prices, and l've never had any problems before. But now my cows are infected with a disease!

Farmer Angus


Place the action cards on the map!


```
|リ||
COWS-4-LESS
```

- 



## Where did the disease come from?



## Use the clue cards to help you:



## Where did the disease come from?



It came from Cows-4-Less.

## How did it spread?



It spread to Farmer Eric's cows in the flood water.

## We need your help!

- What caused the illness?
-Where did it come from?
- How did it spread?
- What type of Salmonella is it?


## How do bacteria grow and reproduce?



It reproduces by splitting in half.

## How fast to bacteria reproduce?



It reproduces every 20 minutes.

## Can you work out how many there will be?



| Time Passed (minutes) | Number of Bacteria |
| :---: | :---: |
| 0 | 1 |
| 20 | 2 |
| 40 | 4 |
| 60 | 8 |
| 80 | 16 |
| 100 | 32 |


| 300 | 32,768 |
| :--- | :--- |

## Are all salmonella bacteria the same?



Salmonella typhi


Salmonella dublin


Salmonella gallinarium


Salmonella typhimurium

## Which type of salmonella do our cows have?



Salmonella

## Safety first!



## Agglutination (stick-together) test

You will need:


4 tubes of liquid
1 plate
1 tube of bacteria
1 pipette from a sick cow

## How does the test work?

Test liquids



Salmonella typhi


Salmonella gallinarium


Salmonella dublin


Salmonella typhimurium


## Agglutination (gloopy) test

2) Put 5 drops of each liquid into one well.


## Which test liquid made the bacteria clumpy?



## Which type of salmonella do our cows have?



The agglutination test shows our sick cows have got..


Salmonella dublin

## We need your help!

- What caused the illness?
-Where did it come from?
- How did it spread?
- What type of Salmonella is it?
- What can we do to stop the disease from spreading?


## How do bacteria spread?



## How would you stop the spread of Salmonella dublin?



# LUNCH 



## We need your help!

- What caused the illness?
-Where did it come from?
- How did it spread?
- What type of Salmonella is it?
- What can we do to stop the disease from spreading?


## Have you been contaminated?



Did you touch the giant bacteria?

Swab my School

AIM
What do we want to find out?

## HYPOTHESIS

What do you think the result will be?


## RESULTS

What did you see?


EXPERIMENTAL DESIGN
How did you do the experiment? What do you need to do the experiment? Is the experiment fair? What one thing are you changing?


## CONCLUSION

What did you find out? Was your hypothesis correct?

## Count the colonies



## How do you treat bacterial infections?



## What is antibiotic resistance?



## What are mutations?

## Original sequence



Point mutation


## Bacteria Evolution

## Neutral Mutation <br> Growth rate remains <br> at $2 x$ <br> all of your bacteria reproduce each turn

## Positive Mutation

Growth rate increased
to 2.5 x
All of your bacteria triple

-


## Negative Mutation

Growth rate reduced to 1.5 x
only half of your bacteria reproduce each turn


## Bacterial Evolution Game

## Aim

- Be the player with the most bacteria at the end of the game.


## Set up

Each group of four players will need:

- Mutation spinner
- Dice
- Counters each player should choose a colour and select 10 small counters (1 bacterium) and 10 square counters ( 10 bacteria) of that colour.
- Mutation cards - sort into piles and place on the table - positive, negative, neutral and antibiotic resistance
- Chance cards - shuffle and place face down on the table.


## How to play

Each player starts the game with one counter (bacterium) of their chosen colour.

Each round has three phases:

1. Mutation Spin the spinner to decide your mutation type
2. Reproduction Multiply your bacteria
3. Environmental Factors One player rolls the dice to decide whether you draw a chance card

## Phase 1- Mutation

1) Each player spins the spinner
2) Take mutation card that matches the colour- it will tell you what effect the mutation has on your future growth.


## Negative Mutation

Growth rate reduced to 1.5 x
only half of your bacteria reproduce each turn
3) Once you have a mutation, you keep it and its effect on your growth rate for all following turns, unless you get another mutation

## Phase 2 - Reproduction

- All players increase their bacterial populations, according to their mutation status

Antibiotic resistance mutation: Has no effect on growth, reproduce as for neutral mutation, $2 x$

## Antibiotic

Resistance
Your bacteria will not be killed in the event of antibiotic treatment

As bacterial numbers increase, use large counters to represent ten bacteria.

## Phase 3- Environmental phase

- One player rolls the dice - if 4,5 or 6 is rolled, a chance card is taken from the top of the pack.


The winner is the player with the most bacteria at the end of the game.

## What we do!





## EASTER BUSH SCIENCE OUTREACH CENTRE <br> -



