EASTER BUSH SCIENCE **OUTREACH** CENTRE

rriculum-linked • real-life science • hands-on • cutting-edge technology • ge technology • engaging • fun • STEN ed • real-life science • hands-on • cu ology • engaging • fun • STEM • fe science • hands-on • cuttin a • fun • STEM • curriculum g-edge technology • en inked • real-life sciend ology • engaging • fun eal-life science • hands-on gy • engaging • fun • STEM ife science • hands-on • cuttingaging • fun • STEM • curriculum-li nce • hands-on • cutting-edge techno

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

nce •

real-life sc

ence • har

• fun • ST

e • hands-on

un • STEM • curri

s-on • cutting-edge

Get hands-on

with real-life

science

Normal www.ebsoc.ed.ac.uk @EBSOClab

ence • hand

• fun • STEM

cience • hand

fun • STEN

Farm Detectives

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

What are microorganisms?

Bacteria

Fungi

Viruses

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

There's trouble on the farm!

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Bacteria Culture

We will grow the bacteria for a few hours at

We need your help!

• What caused the illness?

Bacteria Identification- rod or cocci?

Rod

Cocci (round)

Bacteria come in all shapes and sizes. This can sometimes help us tell them apart.

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre Get hands-on with real-life science

Gram Staining

Gram staining

GRAM-NEGATIVE GRAM-POSITIVE

Gram staining is a technique scientists use tell identify different bacteria.

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Bacteria Identification- Gram + or - ?

Gram negative

Bacteria Identification

Match the what you see down microscope with the descriptions.

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Bacillus subtilis

Bacillus subtilis bacteria are rodshaped and Gram-positive, so they stain purple in a Gram test.

B.subtilis often grows in long chains.

Staphylococcus aureus

Staphylococcus aureus bacteria are round (cocci) and Gramnegative, so they stain pink in a Gram test.

S.aureus grows in clusters like bunches of grapes.

Streptococcus equi Streptococcus equi bacteria are round (cocci) and Gram-positive, so they stain purple in a Gram test.

S.equi grows in long chains, but these are often broken up during staining so they may appear as single cells.

Salmonella

Salmonella bacteria are rod-shaped and Gram-negative, so they stain pink in a Gram stain test.

They often are seen growing separately.

Name

Lab number

Farm Detectives

Bacteria Identification

	Slide 1	Slide 2	Slide 3	Slide 4
Draw what you see				
What shape is it?				
Is it Gram positive or Gram negative?				

Write the number of slide that matches the description:

Bacillus subtilis Streptococcus equi Staphylococcus aureus Salmonella Bacillus subtilis bacteria are rod-Streptococcus equi bacteria are round Salmonella bacteria are rod-shaped Staphylococcus aureus bacteria shaped and Gram-positive, so they (cocci) and Gram-positive, so they and Gram-negative, so they stain are round (cocci) and Gramstain purple in a Gram test. stain purple in a Gram test. pink in a Gram stain test. negative, so they stain pink in a They often are seen growing Gram test. B.subtilis often grows in long S.equi grows in long chains, but these S.aureus grows in clusters like separately. chains. are often broken up during staining bunches of grapes. so they may appear as single cells. THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Record your answers in your worksheet.

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Bacillus subtilis

Streptococcus equi

Staphylococcus aureus

Salmonella

Did you identify the bacteria? Farm Detectives

Bacteria Identification

	Slide 1	Slide 2	Slide 3	Slide 4
Draw what you see				
What shape is it?	cocci	rod	rod	cocci
Is it Gram positive or Gram negative?	positive	negative	positive	negative

Write the number of slide that matches the description:

THE UNIVERSITY of EDINBURGH

Easter Bush Science Outreach Centre

What caused our cow's illness?

Bacteria on slide 2 came from our sick cows.

THE UNIVERSITY of EDINBURGH Science Outreach Centre

The diagnosis

- Salmonellosis
- Caused by Salmonella bacteria
- Infects:

and humans!

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

We need your help!

• What caused the illness?

- Where did it come from?
- How did it spread?

Track the Disease Spread

Farms and Farmers

Public Health Investigators

Which farmers have sick cows?

Use the farmers to help you.

I buy all my dairy cattle from Cows-4-Less, because they have the best prices, and I've never had any problems before. But now my cows are infected with a disease!

Farmer Angus

Place the action cards on the

map!

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Where did the disease come from?

Use the clue cards to help you:

Heavy rainfall has caused the river to flood some of the cow's grazing fields.

Some bacteria which cause illness can be found in raw meat. Cooking meat properly kills bacteria, however, making the food safe to eat.

THE UNIVERSITY of EDINBUR Easter Bush Science Outreach Centre Get hands-on with real-life science

Where did the disease come from?

It came from Cows-4-Less.

How did it spread?

It spread to Farmer Eric's cows in the flood

water.

We need your help!

- What caused the illness?
- Where did it come from?
- How did it spread?

• What type of *Salmonella* is it?

How do bacteria grow and reproduce?

It reproduces by splitting in half. **mitosis**

How fast to bacteria reproduce?

It reproduces every 20 minutes.

Can you work out how many there will be?

You will need

Time Passed (minutes)	Number of Bacteria
0	1
20	2
40	4
60	8
80	16
100	32

300	32, 768

Are all salmonella bacteria the same?

Salmonella typhi

Salmonella gallinarium

Salmonella dublin

Salmonella typhimurium

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Which type of *salmonella* do our cows have?

Salmonella

Safety first!

Agglutination (stick-together) test

You will need:

4 tubes of liquid

1 plate

How does the test work?

Test liquidsImage: Salmonella typhiImage: Salmonella gallinariumImage: Salmonella gallinariumSalmonella gallinariumSalmonella gallinariumSalmonella dublin

Salmonella typhimurium

Agglutination (gloopy) test

6

2) Put 5 drops of each liquid into one well.

Which test liquid made the bacteria clumpy?

Salmonella typhi

Salmonella gallinarium

Salmonella dublin

Salmonella typhimurium

Which type of *salmonella* do our cows have?

The agglutination test shows our sick cows have got..

Salmonella dublin

We need your help!

- What caused the illness?
- Where did it come from?
- How did it spread?
- What type of *Salmonella* is it?
- What can we do to stop the disease from spreading?

How do bacteria spread?

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

How would you stop the spread of *Salmonella dublin*?

THE UNIVERSITY of EDINBU Easter Bush Science Outreach Cent

LUNCH

Meet the Scientists

We need your help!

- What caused the illness?
- Where did it come from?
- How did it spread?
- What type of *Salmonella* is it?
- What can we do to stop the disease from spreading?

•

Have you been contaminated?

Did you touch the giant bacteria?

Swab my School

EXPERIMENTAL DESIGN

Count the colonies

Get hands-on with real-life science

0

How do you treat bacterial infections?

What is antibiotic resistance?

What are mutations?

Original sequence

Point mutation

Bacteria Evolution

Neutral Mutation

Growth rate remains at 2x all of your bacteria reproduce each turn

Positive Mutation

Growth rate increased to 2.5x All of your bacteria triple

Negative Mutation

Growth rate reduced to 1.5x only half of your bacteria reproduce each turn

Bacterial Evolution Game

Aim

• Be the player with the most bacteria at the end of the game.

Set up

Each group of four players will need:

- Mutation spinner
- Dice
- Counters each player should choose a colour and select 10 small counters (1 bacterium) and 10 square counters (10 bacteria) of that colour.
- Mutation cards sort into piles and place on the table positive, negative, neutral and antibiotic resistance
- Chance cards shuffle and place *face down* on the table.

How to play

Each player starts the game with one counter (bacterium) of their chosen colour.

Each round has three phases:

- 1. Mutation Spin the spinner to decide your mutation type
- 2. Reproduction Multiply your bacteria

3. Environmental Factors One player rolls the dice to decide whether you draw a chance card

Phase 1- Mutation

- 1) Each player spins the spinner
- 2) Take mutation card that matches the colour– it will tell you what effect the mutation has on your future growth.

3) Once you have a mutation, you keep it and its effect on your growth rate for all following turns, unless you get another mutation

Phase 2 - Reproduction

• All players increase their bacterial populations, according to their mutation status

Antibiotic resistance mutation: Has no effect on growth, reproduce as for neutral mutation, 2x

As bacterial numbers increase, use large counters to represent ten bacteria.

Phase 3- Environmental phase

 One player rolls the dice – if 4, 5 or 6 is rolled, a chance card is taken from the top of the pack.

The winner is the player with the most bacteria at the end of the game.

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

Thank You Farm Detectives

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

What did you think?

EASTER BUSH SCIENCE **OUTREACH** CENTRE

rriculum-linked • real-life science • hands-on • cutting-edge technology • ge technology • engaging • fun • STEN ed • real-life science • hands-on • cu ology • engaging • fun • STEM • fe science • hands-on • cuttin a • fun • STEM • curriculum g-edge technology • en inked • real-life sciend ology • engaging • fun eal-life science • hands-on gy • engaging • fun • STEM ife science • hands-on • cuttingaging • fun • STEM • curriculum-li nce • hands-on • cutting-edge techno

THE UNIVERSITY of EDINBURGH Easter Bush Science Outreach Centre

nce •

real-life sc

ence • har

• fun • ST

e • hands-on

un • STEM • curri

s-on • cutting-edge

Get hands-on

with real-life

science

Normal www.ebsoc.ed.ac.uk @EBSOClab

ence • hand

• fun • STEM

cience • hand

fun • STEN