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Abstract

This paper studies the effects of changing the priority ordering for admission to

high school in the centralized education system in Mexico City. Elite schools are

oversubscribed and seat rationing follows a priority ordering that relies solely on an

admission exam score. The admission process ignores other available skill measures,

such as middle school grade point average (GPA), which may better capture skills

important for later education and life-cycle outcomes. We first show that marginal

admission to an elite high school decreases on-time graduation for students with low

middle school GPAs and does not affect it for students with high middle school GPAs.

We then study the effects of counterfactual admission policies wherein the priority

ordering increasingly weighs middle school GPA. The larger the weight on GPA, the

larger the share of females and low-income students admitted to elite schools. However,

the elite school on-time graduation is concave with respect to the weight on GPA. The

optimal admission policy would put a weight of 60% on GPA and a 40% weight on the

admission exam score.
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1 Introduction

The use of centralized education systems to match students to public schools is expanding

worldwide [Neilson, 2019]. Because schools have limited seats and some schools experience

excess demand, centralized systems need a way to ration the available seats [Shi, 2022].

Because the use of prices as a rationing mechanism is not feasible in public education and

K-12 schools are not allowed to have preferences over students, policymakers define prior-

ity orderings to assign a priority index to each student. Priority orderings solve the excess

demand problem by indicating how students gain admission to over-subscribed schools. Typ-

ical components of priority orderings are siblings, residential zones, lotteries, standardized

exams, and GPAs.

In practice, many centralized systems rely solely on a standardized admission exam to

rank students for admission.1 Understanding the consequences of this practice is essential for

several reasons. First, it could affect academic outcomes if it leads to a mismatch between

students’ skills and schools’ academic requirements. For example, consider a case where

GPA is a better measure of academic preparedness than a standardized admission exam,

and most seat rationing occurs at academically demanding schools. In this case, many

underprepared students could be allocated to highly demanding schools, resulting in poor

academic outcomes. Second, it could affect equity of access across subgroups. For example,

consider a case where boys score higher on standardized exams while girls have higher GPAs.

If the system only uses a standardized exam to prioritize students, there will be more boys

admitted to highly ranked schools than girls.

In this paper, we explore these issues by studying the case of the centralized high school

admission system in Mexico City. In this system, students’ priority ordering is solely based

on their scores in a system-wide admission exam. The system has different types of high

schools. Elite high schools are academically demanding and experience higher demand than

available seats. Both elite and non-elite schools use the same priority ordering.2 We focus on

1For example, the centralized systems in Romania, Kenya, Trinidad and Tobago, Ghana, Barbados, and
Mexico City. In the US, selective schools in NYC rely solely on a standardized exam. In contrast, selective
schools in Chicago and Boston combine standardized exams and GPA.

2Elite schools also have a minimum GPA requirement of 7/10, but most of the students meet this
requirement (more than 90%). The minimum GPA to graduate from middle-school is 6/10.
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the following question: Could the system create better matches by broadening the priority

ordering to also consider the information contained in GPA? We focus on GPA as a potential

channel to improve student-school matches because previous literature shows that grades

measure non-cognitive skills (e.g., effort and self-control) to a higher degree than achievement

tests do, and that non-cognitive skills are important determinants of desirable educational

outcomes [Stinebrickner and Stinebrickner, 2006; Duckworth et al., 2012; Borghans et al.,

2016; Jackson, 2018].

We use all participants’ administrative records in the centralized high school admission

process in Mexico City. We complement the admission data by collecting official high school

on-time graduation records (i.e., three years after admission) for all the students assigned

to schools through the centralized admission process. We use on-time graduation as our

mismatch measure to the extent that it reflects normal grade progression at the admitted

school. This unique dataset features three advantages for the analysis. First, we have infor-

mation on the application and on-time graduation of more than 250,000 students, allowing

us to explore rich heterogeneity without running into statistical precision problems. Second,

we observe strategy-proof measures of students’ ranking of schools (i.e., students’ ordinal

preferences).3 Third, our dataset includes applicants’ skill measures beyond the admission

exam score, such as their middle school GPA and score in a low-stakes standardized exam

used for school accountability.

First, we shed light on the importance of the skills captured by GPA and their influence on

students’ probability of on-time graduation from the most over-subscribed and academically

demanding schools in the system (i.e., elite schools). Using a Regression Discontinuity Design

(RDD), we show that marginal admission to an elite school decreases the probability of on-

time graduation by six percentage points. However, students at the margin of admission to

an elite school are very heterogeneous in terms of their middle school GPAs. The correlation

between the admission exam score and middle school GPA is 0.4. To study heterogeneity

by GPA in the effect of interest, we implement RDDs separately for students with above-

3The matching algorithm is the Serial Dictatorship which is strategy-proof [Svensson, 1999] when there
are no constraints in the length of the application lists. In Mexico City, students can only rank up to twenty
schools, but this constraint is not binding as 97% of them submit shorter lists. In addition, students submit
their application lists before they know their priority index. Uncertainty in the priority index incentivizes
truthful revelation of preferences.
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and below-median GPAs. We find that for students with below-median GPAs marginal

admission to an elite school decreases the probability of on-time graduation by fourteen

percentage points. For students with above-median GPAs, marginal admission to an elite

school does not affect their probability of on-time graduation. That is, the effect of marginal

admission to an elite school on on-time graduation depends on students having high or low

GPAs.

We also implement RDDs separately for boys and girls and find heterogeneous effects by

gender. We find that the effect for boys is similar to the one for students with low GPAs, and

the effect for girls is similar to that for students with high GPAs. Boys experience a decrease

in their on-time graduation probability, while girls are unaffected. This is consistent with

previous findings showing that school quality affects the educational attainment for boys and

girls differently [Jackson, 2010; Clark, 2010; Deming et al., 2014]. We further show that a

potential explanation behind these results is that girls have higher GPAs than boys at all

levels of the admission exam score, including the elite schools admission cutoffs.

In terms of our research question, our first set of results imply that, even for students

at the margin of admission to an elite school, an assignment mechanism that relies on a

single measure of skills may create mismatch if it excludes important information about a

student academic potential. In particular, if it excludes the information contained in grades.

In addition, that there is scope for increasing the share of girls at elite schools while also

increasing the on-time graduation rate by giving girls more credit for their higher grades.

Motivated by these results, we then define and study the effects of counterfactual admis-

sion policies that could better match students to schools and decrease inequality of access.

We create a grid of weights on the admission exam score and GPA and for each combina-

tion of weights we run the Serial Dictatorship algorithm to obtain simulated matches. To

calculate counterfactual on-time graduation rates, we estimate discrete choice on-time grad-

uation models for each school in the baseline and combine the estimated parameters with

the characteristics of the students allocated to each school in the simulations. We proceed

this way because our counterfactual admission policies affect students beyond the margin of

admission to elite schools for whom our RDD estimates may not be informative. Further-

more, the policies induce placement and displacement effects that affect even students that
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do not apply to elite schools. We follow Dale and Krueger [2014] in that our on-time grad-

uation models include controls for the characteristics of students’ application lists to deal

with commonly unobserved student preferences that could affect their on-time graduation.

Our counterfactuals results are two. First, the higher the weight on GPA, the higher the

share of girls and low-income students admitted to elite schools. We observe an increase in

the share of girls because they have higher GPAs than boys and they also prefer elite schools

than non-elite schools, so the counterfactuals provide them with greater access to their

preferred schools. We observe an increase in the share of low-income students because the

admission exam score is highly correlated with family income, whereas GPA is not. Second,

the on-time graduation rate from elite schools has a concave relationship with the weight

on GPA. The concave relationship is a product of both the admission exam score and GPA

being important determinants of on-time graduation even conditional on each other. For a

central planner that cares about equality of access and on-time graduation at elite schools,

optimal weights on the admission exam score and GPA are 40% and 60%, respectively.

Our paper contributes to three strands of the literature. First, it contributes to the

literature on centralized education systems. Most of the previous literature considers school

priorities as given and studies the consequences of using different matching mechanisms to

allocate students to schools [Pathak, 2011; Agarwal and Somaini, 2020]. Yet, defining a

priority structure is an integral part of the design of a centralized system. Neilson [2019]

reviews centralized education systems worldwide and highlights that the consequences of

implementing different priority structures are understudied. Shi [2022] and Abdulkadiroğlu

et al. [2021] are the closest papers to ours.4 Their focus is on finding optimal priority

structures in centralized education systems. We complement their work by also looking at

students’ downstream outcomes, such as on-time graduation rates, which are crucial to assess

the impact of mismatch within an assignment system.5

Second, we contribute to the extensive literature studying the effects of elite/selective

4For the college admissions case, Arenas and Calsamiglia [2022] study the effects of a policy that increased
the weight in standardized exams relative to high school grades in a college admission index. This change
decreased the share of females in selective degrees.

5As Agarwal et al. [2020] and Larroucau and Rios [2020] highlight, it is essential to understand how
assignment mechanisms perform when evaluated on outcomes of policymakers’ concern beyond efficiency
measures based on revealed preferences.
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schools on educational outcomes.6 When studying heterogeneity by baseline skills, most

previous studies focus on heterogeneity by high and low performance on a standardized

exam. To our knowledge, only Dustan et al. [2017] explores heterogeneity by GPA, finding

similar results to us but focusing on a subset of the elite schools in Mexico City and relying

on a proxy for high school graduation. We complement their work in three ways. First, we

study the complete set of elite schools and rely on administrative on-time graduation records.

Second, we explore effect heterogeneity by gender and its connection with the heterogeneity

by GPA. Third, we study the implications of the heterogeneous results for the design of the

priority ordering.

Lastly, we contribute to the literature on using achievement tests and grades in education

policy. The informational content of grades grows in importance when considering non-

cognitive skills. Stinebrickner and Stinebrickner [2006] find that high school GPA strongly

predicts study effort during college, while the ACT score does not. Duckworth et al. [2012]

show that grades measure students’ self-control more than achievement tests. Borghans

et al. [2016] show that grades measure personality more than achievement tests and that

personality is an important determinant of many relevant life outcomes. The informational

content of grades calls into question the prominent role of achievement tests in educational

policy. For example, Heckman et al. [2014] shows the shortcomings of a policy that treats

the GED as equivalent to a high school diploma, while Duckworth et al. [2012] emphasizes

the limitations of a policy that conditions school funding on the use of standardized tests.

Our paper complements this previous literature by focusing on the consequences of a policy

that ignores the informational content of grades when prioritizing students in a centralized

education market.

The remainder of the paper proceeds as follows. Section 2 describes the education system

in Mexico City. Section 3 provides details about the administrative data we use for the

analysis. Section 4 contains the first part of our analysis describing the implementation and

results of our RDDs. Section 5 includes the definition of our counterfactuals, our graduation

model, and our counterfactuals results. Section 6 concludes.

6See Clark [2010]; Jackson [2010]; Pop-Eleches and Urquiola [2013]; Abdulkadiroğlu et al. [2014]; Dobbie
and Fryer Jr [2014]; Lucas and Mbiti [2014]; Abdulkadiroğlu, Angrist, Narita, Pathak and Zarate [2017];
Dustan et al. [2017]; Beuermann and Jackson [2022]; Angrist et al. [2023].
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Table 1: Sub-systems in 2007

Number of Schools Seats First in ROL Admission Cut-Off

SUB 1 14 14.1% 48.5% 86.3
SUB 2 16 8.7% 14.5% 79.6
SUB 3 1 0.4% 0.7% 74.0
SUB 4 2 0.9% 0.5% 60.5
SUB 5 40 16.9% 6.1% 49.2
SUB 6 215 22.8% 16.1% 47.0
SUB 7 186 17.6% 7.7% 44.5
SUB 8 179 18.4% 5.8% 35.8
SUB 9 5 0.3% 0.2% 32.4

Total 658 100.0% 100.0% 45.0

Note: This table shows the aggregate supply, demand, and equilibrium cut-offs for
the high school sub-systems in Mexico City. The fourth column shows the average
admission cut-offs of the schools in a given sub-system.

2 Education in Mexico City

The school system in Mexico has three levels: elementary, middle and high school. Ele-

mentary school is six years long, and middle and high school are three years each. The

centralized high school education system in Mexico City encompasses the Federal District

and 22 nearby urban municipalities in the State of Mexico. Most of the high school admis-

sion process participants are middle school students who reside in Mexico City and are in

their last semester of middle school. Additional participants (less than 25%) attend middle

schools outside of Mexico City, already have a middle school certificate, or are enrolled in

adult education. In total, about 300,000 students participate in the admission system.

Public high schools in Mexico City belong to one of nine sub-systems (Table 1). Each

sub-system manages a different number of schools and offers its own curriculum. Two sub-

systems, SUB 1 and SUB 2 in Table 1, enjoy a high reputation, are affiliated with the two

most prestigious public universities in Mexico City, and offer a more advanced curriculum.

For the rest of the paper, we refer to the schools belonging to these sub-systems as elite

schools.

The first column of Table 1 shows the number of schools affiliated with each sub-system.

The second column indicates that elite schools offer only 23% of the total number of seats in

the system. The third column shows a high demand for elite schools; 63% of students list an
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elite school as their first option. Since elite schools are heavily over-subscribed, admission to

elite schools is very competitive, which leads to these schools having high admission cut-off

scores. We define an admission cut-off as the lowest score obtained by the students assigned

to a given school in the previous admission cycle. The admission exam scores range from

31 to 128 points. The fourth column of Table 1 shows that elite schools’ average admission

cut-offs are the highest in the system.

The timeline of the application process is as follows. In February, students receive an

information booklet describing the steps they need to follow. The information booklet also

lists all available schools, their specializations, addresses, and previous years’ admission

cut-offs. The government also provides a website where students can download additional

information about each school and use a mapping tool to see each school’s location. In

March, students submit a Rank Order List (ROL) listing up to 20 schools. In June, all

students take a system-wide admission exam. We include a more detailed description of the

admission exam in Appendix A.

All schools prioritize students based on the admission exam score. Elite schools exclude

from consideration students with a middle school GPA lower than 7 out of 10. However,

most of the students meet this requirement. To obtain a middle school certificate, students

must have a GPA of at least 6 out of 10. In 2007, 90.62 percent of students met the GPA

requirement for elite school admission (Figure 1).

Before implementing the matching algorithm, schools decide the number of seats to offer.

During the matching process, some students may have the same admission exam score and

compete for the last available seats at a given school. In this case, schools either admit or

reject all tied students. For example, if a school has ten seats remaining during the matching

process, but 20 tied students compete for them, the school must decide between admitting

all 20 or rejecting them all.

The matching algorithm is the Serial Dictatorship. The Serial Dictatorship algorithm

ranks students by the admission exam score and, proceeding in order, matches each applicant

to her most preferred school among the schools with available seats. We provide a more

detailed explanation of the Serial Dictatorship algorithm in Appendix B.

Some students may be left unmatched at the end of the matching process. There are two
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Figure 1: Elite schools minimum GPA requirement
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Note: This figure shows the cumulative distribution function of
middle school GPA. The minimum GPA for middle school grad-
uation and participation in the centralized high school admission
system is six. To be considered for admission to an elite school,
students must have a GPA greater or equal to seven (dashed line).

reasons why some students are unmatched. First, some students do not clear the cut-off for

any schools they list in their ROLs. Second, some students only apply to elite schools and

do not meet the minimum GPA requirement. Unmatched students can register at schools

with available seats after the matching process is over.

3 Administrative Data

We use individual-level administrative data from the 2007 high school admission process in

Mexico City. In that year, 256,335 students applied to 658 high schools. We observe each

student’s admission exam score, ROL, GPA, assigned school, and socio-demographic char-

acteristics, such as gender and parental income. In Table 2, we include descriptive statistics

of the applicant population. Students assigned to elite schools have higher admission exam

scores, higher GPAs, and a larger share of them are male. The system-wide on-time gradu-

ation rate is 44%, and elite schools have an eleven percentage points higher average on-time

graduation rate than non-elite schools. This difference likely reflects the selection of more
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Table 2: Students’ characteristics by assignment group

All Elite Non-Elite Unmatched

Exam Score 65.24 90.16 60.27 51.20
(19.21) (10.87) (14.88) (12.80)

GPA 8.03 8.56 7.88 7.89
(0.84) (0.81) (0.81) (0.73)

Female 0.51 0.45 0.51 0.61

Age 15.82 15.56 15.90 15.88
(1.60) (1.23) (1.72) (1.55)

Length of ROL 9.32 9.62 9.53 8.03
(3.75) (3.92) (3.71) (3.41)

Position assigned 2.81 1.94 3.79 -
(2.96) (1.72) (3.11) -

On-time graduation 0.44 0.52 0.41 -

256,335 54,654 162,063 39,618

Note: This table shows the characteristics of the middle school
students participating in the assignment process. The length of
ROL is the number of schools a student includes in her application
list. The position assigned is where she ends up assigned in the
ranking submitted by a student. On-time graduation indicates if a
student graduated or not in three years. Standard deviations are
in parenthesis.

skilled students into elite schools.

On the high school side, we have information on the number of seats each school offers,

the sub-system to which each school belongs, and previous years’ admission cut-offs for each

school. With this information, we use the Serial Dictatorship algorithm and fully replicate

the assignments we observe in the data (Table 3). Being able to reproduce the student-

school matches observed in the data gives us confidence in the transparency of the admission

system.

We collect administrative on-time graduation records from 2010, three years after admis-

sion. The expected duration of high school is three years for all high schools. We obtained

on-time graduation records for all the students assigned to eight of the nine sub-systems (80%

of all the assigned students), including the two elite sub-systems. For the missing sub-system,

we proxy for on-time graduation using students’ participation in a standardized exam they

took during the last semester of high school. This exam is low-stakes for the students and

aims to track school level progress. Not all schools participate in this exam, but all schools
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Table 3: Matching outcomes in 2007

N %

Matched 216,717 73.02
Unmatched 39,618 13.35
Subtotal 256,335
Ineligible < 31 in exam 5,841 1.97

No exam 6,353 2.14
No middle school 28,249 9.52

Total 296,778 100

Note: This table shows the results of running the Serial
Dictatorship algorithm using the administrative data. A
student is ineligible if she obtains a score lower than 31 in
the admission exam, does not show up for the exam, or
does not obtain a middle school degree.

in the missing sub-system do. To be consistent with our definition of on-time graduation,

we rely on students’ exam participation in 2010. We employ students’ national identification

numbers to merge the admissions data with our measures of on-time graduation.

Previous literature shows that females tend to perform worse in standardized tests than

males [Niederle and Vesterlund, 2010]. This gap in performance does not mean that females

have lower skills than males but that there are gender differences in performance under

competitive pressure. In Figure 2, we show some descriptive statistics regarding gender

differences in our available skill measures. Panel (a) shows that boys score higher than girls

in the admission exam score. In contrast, Panel (b) shows that girls have higher GPAs than

boys. Furthermore, Panel (c) shows that girls have higher GPAs than boys at every quintile

of the admission exam score distribution. In this context, assigning students to elite schools

based only on performance in an admission exam could limit girls’ access to them. Further, if

GPA is a strong predictor of on-time graduation, then such an admission rule could increase

mismatch by restricting the access of high-GPA girls to the most academically demanding

schools.

In addition to the admission and on-time graduation information, we observe each stu-

dent’s score on a standardized, low-stakes exam students take during the last semester of

middle school. This exam is designed and implemented by the government for school ac-

countability purposes. We refer to this exam as the low-stakes exam.
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Figure 2: Skill measures by gender
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Note: Panel (a) in this figure shows the distribution of admission exam scores for girls and
boys. Panel (b) in this figure shows the distribution of GPA for girls and boys. Panel (c) in
this figure shows the average GPA for girls and boys at each quintile of the exam score.

Our data collection efforts provide us with three advantages. First, we observe the

application and on-time graduation records for a large number of students, which allows us

to study heterogeneity in the causal effects of elite school admission. Second, due to the

matching algorithm’s properties and the admission process’s timing, we observe strategy-

proof measures of students’ rankings of schools (i.e., their ordinal preferences). In the first

part of the analysis, this allows us to compare the outcomes of students whose first best

is gaining admission to an elite school and their second best is admission to a non-elite

school. In the second part of the analysis, this allows us to control for commonly unobserved

preference heterogeneity that affects the probability of on-time graduation. Third, having
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information on GPA, the admission exam, and the additional low-stakes exam allows us to

isolate what is measured by GPA from what is already taken into account by standardized

exams throughout the analysis.

4 Regression Discontinuity Evidence

Elite schools are the most demanded schools in the system, and admission to them requires

clearing their admission cut-offs. We exploit these cut-offs to identify the effect of marginal

admission to an elite school on the probability of on-time graduation. We treat admission

as equal to enrollment because enrollment at elite schools is almost universal. The average

enrollment rate for students admitted to an elite school is 97.42%.

We follow Dustan et al. [2017] and construct a sample of students who would be assigned

to an elite school if they meet the cut-off and assigned to a non-elite school otherwise. We

impose three sample restrictions. First, we exclude all ineligible students for admission to

an elite school. To be eligible for admission to an elite school, students must have a GPA

higher than 7/10 during middle school. Second, we only include students who have applied

to at least one elite and non-elite school. Third, we only include students who rank elite

schools higher than non-elite ones. The purpose of the last restriction is to select students

with similar preferences in that they prefer elite schools to non-elite schools.

Our strategy to estimate the effect of admission to a particular institution follows the

same intuition as in Kirkeboen et al. [2016]. In our case, we consider only two institutions,

elite and non-elite. In the estimation sample, we have students whose first best is an elite

school and whose second best is a non-elite school in the local institution ranking (i.e., same

ordinal preferences around their admission score). However, in addition to students having

the same preferences in the local institution ranking, we only consider students who prefer

elite to non-elite schools in their full ranking. We can impose this last restriction because

most students who apply to both types of schools rank elite schools higher than non-elite

schools. The previous restriction only excludes 815 (0.76%) students.

In our estimation sample, each student has a minimum cut-off for elite admission, ck,

that depends on her preferences. For example, if a student applied to multiple elite schools,
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her admission cut-off would be the lowest cut-off of the elite schools she included in her

application. There are k = 30 groups of students that share the same ck, corresponding to

the cut-offs of the 30 elite schools. Within each group k, the following condition is satisfied:

si ⩾ ck admitted to some elite school,

si < ck admitted to some non-elite school,

where si indicates student i score in the admission exam.

Our empirical specification follows Equation 1, where we stack our previously defined k

groups. In this equation, yik is a dummy variable that denotes whether student i in group k

graduates on time. We center the running variable si by the group-specific admission cut-offs

ck such that a positive value of si − ck indicates admission to an elite school. The dummy

variable admiti takes a value of one when a student is admitted to an elite school and zero

otherwise.

yik = µ+ γadmiti + δ(si − ck) + τ(si − ck)× admiti + ϵik. (1)

Our parameter of interest γ indicates the effect of marginal admission to an elite school on

on-time graduation. For estimation, we follow the non-parametric robust estimator proposed

by Calonico et al. [2014]. We also follow their method to calculate the mean squared error

optimal bandwidth. For robustness, we also include additional results using half the optimal

bandwidth, twice the optimal bandwidth, and polynomials of degrees two and three of the

running variable (Appendix F).

Regarding the validity of the design [Imbens and Lemieux, 2008], we show that there

is no evidence of manipulation of the running variable around the admission cut-offs. If

students could manipulate the running variable, they could sort themselves to be above

an elite school admission cut-off. This type of sorting is unlikely in our context for two

reasons. First, admission cut-offs are determined in equilibrium after students submit their

applications and take the admission exam. Second, students do not know their score in the

admission exam until the end of the admission process. If there were manipulation, we would
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Figure 3: Continuity test
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expect to observe bunching of the running variable just above the admission cut-offs. Figure

3 shows the density of the running variable. The density does not show any bunching, and

we do not reject its continuity at the admission cut-offs (T=-1.2). Our findings are consistent

with the absence of manipulation.

Figure 4 shows that other predetermined covariates such as gender, age, GPA, family

income, and number of siblings also do not vary discontinuously at the cut-offs. This is

further evidence supporting the validity of the design. The estimates and standard errors

are in Appendix C.

Figure 5 shows a graphical representation of the effect of marginal admission to an

elite school on on-time graduation. Elite schools decrease the on-time graduation rate of

marginally admitted students (six percentage points). We show the estimated parameter γ̂

and its standard error in Appendix F. Elite schools have a more demanding curriculum, and

students marginally admitted using a single standardized exam may not be prepared enough

to complete their degree on time. However, this does not mean that all students marginally

admitted experience a negative effect from elite schools. Since the correlation between the

admission exam score and middle school GPA is 0.4, some students at the margin have high
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Figure 4: Predetermined covariates
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Note: This figure shows binned means of predetermined covariates around the elite ad-
mission thresholds. Income is a dummy variable indicating if the family monthly income is
higher or lower that 5000 pesos (458 USD).

and low middle school GPAs. In the next section, we explore if the effects are different for

these two subgroups of students.

Before we analyze the effect for students with high and low middle school GPAs, we
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Figure 5: The effect of elite schools on on-time graduation

0
.2

.4
.6

.8
1

O
n-

tim
e 

gr
ad

ua
tio

n

-20 -10 0 10 20
Centered admission exam score

EliteNon-Elite

Note: This figure shows binned means of on-time graduation
around the elite admission thresholds.

show that the design is also valid for each subgroup. There is no evidence of manipulation

of the running variable for our samples of high- and low-GPA students. In addition, the

pre-determined covariates are also continuous at the cut-offs. We include these results in

Appendixes D and E.

4.1 Heterogeneity by GPA

Students at the elite school admission cut-offs can be heterogeneous in other characteristics

that affect on-time graduation. For example, they may have high or low GPAs. Borghans

et al. [2016] show that grades and achievement tests capture IQ and personality traits, but

grades weigh personality traits more heavily. Since personality traits such as self-control or

conscientiousness could matter for elite school on-time graduation, we next explore if the

effect is different for students with above and below-median GPAs.

In an extreme example, consider the case where the admission exam only captures IQ

while GPA only captures self-control. Then, exploring our heterogeneity of interest would be

equivalent to differentiating between the effect of elite schools on high-ability, low-self-control

students and high-ability, high-self-control students. In this example, to gain admission to

an elite school, a student needs to perform well in the admission exam (high-ability), but she

16



Figure 6: Elite school admission and on-time graduation by GPA
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(a) Low middle school GPA
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Note: This figure shows binned means of on-time graduation around the elite admission thresholds
for students with high- and low-GPA.

need not have high self-control. To the extent that on-time graduation from an elite school

requires you not only to have high ability but also have high self-control, we would expect

differentiated effects.

The panels (a) and (b) in Figure 6 shows that the effect of marginal admission to an

elite school on on-time graduation is heterogeneous by middle school GPA. It is negative (15

percentage points) and significant for students with below-median GPA and it does not affect

the on-time graduation of students with above-median GPA. We include point estimates and

standard errors in Appendix F. We take these results as evidence that on-time graduation

from elite schools require a combination of what is measured by the admission exam and the

additional skills that GPA measures, when marginally admitted.

In Appendix I, instead of separating students as having above- or below-median GPAs in

the entire distribution of GPAs, we define above- and below-median GPA students relative

to the distribution of GPAs within their middle schools. We do this to control for middle

school effects and ensure that our results are not driven by attending particular subgroups of

middle schools. Our heterogeneous results by GPA are robust to this alternative definition

of high and low GPA.

In Appendix J, we include an additional robustness check showing that the heterogeneity

by GPA does not depend on elite schools having relatively higher or lower admission cut-
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offs. We separate elite schools into two groups, high- and low-cut-offs, among our thirty elite

school cut-offs. We then show that the negative effect for low GPA students and the null

effect for high GPA students is present in both groups of elite schools.

In Appendix G, we show that our heterogeneous results are not just the product of using

multiple measures of the same skill (i.e., noise reduction). To do so, instead of GPA, we

explore heterogeneity by performance in the low-stakes standardized exam. Our results in

G shows negative effects on on-time graduation for both the high and low performers in the

low-stakes standardized exam.

In Appendix H, to isolate the skills that GPA measures from those already accounted for

by standardized exams, we use the residuals from regressing GPA on the admission exam

score and the low-stakes standardized exam to define high and low GPA students. Our results

show that our heterogeneous results in Figure 6 remain almost identical. We interpret this as

evidence that the additional skills that GPA better captures are driving our heterogeneous

results by GPA.

4.2 Heterogeneity by gender

In the last section, we showed that the effect of elite schools on the on-time graduation

probability of marginally admitted students depends on their previous GPA. Since in Section

3, we showed that girls have higher GPAs than boys and, arguably, more of the skills needed

to graduate on time from elite schools, we would also expect to observe heterogeneous effects

by gender.

Figure 7 shows the results of implementing an RDD separately for girls and boys. The

effect for boys is almost identical (decrease of 14 percentage points) to that for students with

below-median GPA. In contrast, the effect for girls replicates the null effect for students with

above-median GPA. We include point estimates and standard errors in Appendix F. Our

results can partially be explained by differences in the skills that GPA measures between

girls and boys.

To understand the source of heterogeneity in treatment effects, we follow Gerardino

et al. [2017] and use propensity score weighting to keep one characteristic balanced while

doing subgroup analysis for the other. In our case, we keep gender balanced while doing
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Figure 7: Elite school admission and on-time graduation by gender
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Note: This figure shows binned means of on-time graduation around the elite admission thresholds
for boys and girls.

heterogeneity by GPA and keep GPA balanced while doing heterogeneity by gender. We show

the main results of this exercise in Appendix K. When we hold gender balanced, we still

observe heterogeneous results between high and low-GPA students, although the difference

in effect sizes is smaller than before. However, when we hold GPA balanced, we no longer

observe differences in the effect between girls and boys. We interpret this as evidence that

what drives our heterogeneous results are the skills being captured by GPA, and what is

behind the gender results is that girls have higher GPAs than boys at the elite admission

cut-offs.

Overall, the results of our RDD analysis tell us two facts. First, marginal admission to

elite schools only affects the on-time graduation for students without enough of the skills

needed by their higher academic standards. Second, a combination of the admission exam

and GPA is better at capturing these skills than the admission exam alone.

5 Counterfactual Admission Policies

Motivated by the RDD results, we examine the effects of counterfactual admission policies

that may better match students to schools. Our admission policies combine the admission

exam score and GPA to define new priority orderings. Consider a priority order that follows
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Equation 2. Since the matching algorithm is the Serial Dictatorship, all schools j follow

the same priority for student i. Notice that when w = 0, we are in the baseline case where

schools rank students using only their admission exam scores.

Prioritywij = (1− w)EXAMi + wGPAi, (2)

where w ∈ [0, 1].

We create a grid of weights w that go from zero to one in 0.1 increments for our coun-

terfactuals. We run the Serial Dictatorship algorithm for each grid point to obtain the

equilibrium allocation. Equation 3 defines fSD as a matching function that has as inputs

the priorities, the ROLs, and the offered seats. In our counterfactuals, we keep the ROLs

and seats offered fixed while changing Prioritywij through changes in w.

Matchw
ij = fSD(Prioritywij, ROLs, seats). (3)

We use GPA in levels in our main counterfactual analysis. However, depending on pol-

icymakers’ concerns regarding possible undesirable behavioral responses to including the

information in GPA, there are alternative ways to add this information to the priority order.

For example, if policymakers’ main concern is related to middle schools inflating grades as a

response, then a better way to use the information in GPA would be to combine the admis-

sion exam score with within middle schools percentile ranking by GPA. Since within-school

rankings are unaffected by grade inflation, such a policy could help prevent this response.

Another alternative is to use the low-stakes standardized exam to create a measure of

GPA free of middle school effects. Policymakers can then combine the admission exam score

with this measure to define the new priority ordering. The benefit of this option is that it

removes middle schools’ effects on GPA unrelated to a standardized measure of preparation.

A limitation of this option is that by eliminating middle school fixed effects it may also be

losing valuable information regarding a student’s academic potential.

As we show in Appendix L and Appendix M, ex-ante, our counterfactual results are
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not sensitive to the implementation option. However, the best policy implementation will

depend on policymakers’ primary concerns. For example, in the Mexican context, where

middle school mobility is more restricted since middle school admissions are also centralized

[Fabregas, 2023], preventing grade inflation could be more important, and using within

middle school percentile ranking by GPA could be the best implementation.

Students could also react by changing their efforts from time spent studying for the

admission exam to time spent on their middle school coursework. Such a behavioral response

is not necessarily negative. Suppose students move more of their effort towards coursework

and away from studying for the entrance exam. In that case, we might expect on-time

graduation rates to increase even more, assuming that studying for middle school coursework

is more productive in building knowledge/skills associated with future academic success than

studying for the entrance exam. In this case, we would expect our results to be a lower bound

for the total effects on on-time graduation. Other potential ways to increase GPA, such as

private tutoring, are less likely to occur given that we are considering a measure of overall

GPA during three years of middle school.

As highlighted in Equation 3, an important assumption we make when analyzing the

effect of our counterfactual admission policies is that students’ ROLs do not change when

priorities change. There are some cases when the change in priorities could affect the observed

ROLs. One case considers that students could be strategic when choosing their ROLs. In

this case, the change in priorities would change students’ ex-ante admission probabilities, and

strategic students would consider the new admission probabilities and change their ROLs.

In our context, we believe that students are unlikely to be strategic for two reasons.

First, the SD algorithm is strategy-proof when the length of students’ ROLs is unre-

stricted [Haeringer and Klijn, 2009]. Although the Mexican system constrains the length of

the ROLs to 20, only 2.7% of students submit a ROL of the maximum length. In Figure 8,

we show the distribution of ROL lengths in our data. Since the constraint is not binding,

the strategy-proof theoretical property likely holds in practice. That is, students truthfully

report their preferences as their ROLs without considering admission probabilities.7

7Abdulkadiroğlu, Agarwal and Pathak [2017] impose a similar assumption when studying the centralized
education system in New York City (NYC). The NYC system has around 400 high schools. Students can
rank up to 12 schools. One of their arguments favoring truthful revelation of preferences is that in practice,
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Figure 8: ROLs length
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Note: This figure shows the distribution of ROLs length among
the participants in the admission process.

Second, another case where truth-telling may break even under a strategy-proof algorithm

is the strict priority setting. Fack et al. [2019] consider this case. In the strict priority setting,

students know their priority indices (e.g., admission exam scores) before choosing their ROLs.

Consequently, students face limited uncertainty about their admission outcomes and may

choose to omit schools for which they have zero ex-ante probability of admission. Students

may be more uncertain about their admission outcomes if the priority index is unknown when

they submit their ROLs. This is the case in Mexico City, where students submit their ROLs

two months before taking the admission exam. The uncertainty in the priority index leads

to admission probabilities that are rarely zero ex-ante and incentivizes truthful revelation of

preferences.

Additionally, ROLs could change in the counterfactual if students’ preferences depend on

equilibrium outcomes. Consider the case where students’ preferences for schools depend on

the average skills of their future peers, and students have rational expectations. Then, the

change in priorities could affect the average skills of students assigned to different schools,

changing students’ preferences for schools and their ROLs. A common assumption in the

school choice literature is that preferences do not depend on equilibrium outcomes [Agarwal

only 20% of students rank 12 schools.
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and Somaini, 2020]. We also work under this assumption. Importantly, even though some

students get placed and displaced from different schools in the counterfactual, the changes

in average students’ skills (admission exam score combined with GPA) are small.

We estimate a flexible on-time graduation model to obtain a mapping between students’

characteristics and their on-time graduation probability from a given school j (Equation 4).

We then use our model parameters to map the counterfactual equilibrium allocations to on-

time graduation rates. We proceed this way because our counterfactual admission policies

affect some students for whom our RDD estimates may not be informative. For example,

our RDD estimates may not be informative for students beyond the margin of admission to

elite schools. In addition, they are not informative for the students placed and displaced

from other types of schools due to the equilibrium effects induced by the policy changes.

Pj(x) = Pj[Y = 1 | X = x] = Ej[Y | X = x] , where j ∈ {1, ..., J} (4)

Pj(x) = G(αj + x′βj). (5)

We allow for school-specific model parameters, so individual-level characteristics can dif-

ferentially affect on-time graduation probabilities from different schools (i.e., match effects).

The dependent variable Y is a binary variable that equals one if student i graduated on

time from a high school j, and zero if not. We divide the independent variables into three

groups. The first group includes skill measurements such as the admission exam score and

middle school GPA. The second group includes sociodemographics such as gender, age, and

parental income. The third group includes characteristics of students’ application lists. This

last group of variables is motivated by the empirical specification in Dale and Krueger [2014],

which takes advantage of the information revealed in college application lists. The charac-

teristics of the application lists we include are the number of elite schools in students’ ROLs,

the length of their ROLs, and the average quality of the schools in their ROLs.8

8Our measures of quality are the schools’ admission cutoffs in the previous year. The average quality of
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Equation 5 denotes a mapping between student characteristics and the probability of

graduation on time from school j. The mapping is defined by the parameters αj, βj, and

the function G, which we assume to be the cumulative distribution function of the standard

normal distribution. Under this assumption, our on-time graduation model is a probit for

each school j.

Our counterfactuals assign some students to different schools than their initial assign-

ment. For example, consider a student assigned to a school j in the baseline, which is

assigned to a school j′ in a counterfactual. To calculate her on-time graduation probability

at the new school, we use the mapping from student characteristics to the on-time gradua-

tion probability we previously obtained for school j′. This student’s counterfactual on-time

graduation probability follows Equation 6.

P̂j′(x) = G(α̂j′ + x′β̂j′) (6)

An implicit assumption in this exercise is that the parameters αj and βj do not change

in the counterfactuals. Consider the case where these parameters capture fixed school char-

acteristics such as infrastructure or quality of teachers. Then, the counterfactuals change

the students’ characteristics that interact with these attributes (i.e., match effects). A more

complex case is when αj and βj also capture the effect of the average peer quality on a

student’s on-time graduation probability. Even under this case, our counterfactuals remains

informative if the average peer quality at different schools does not change much. If we mea-

sure peer quality by a combination of the admission exam score and GPA, the changes in

average peer quality are small. For example, in the counterfactual, students at elite schools

have higher GPAs but lower admission exam scores.

We use school-level estimates for the counterfactuals, but for ease of exposition, we show

estimates at the subsystem level in Table 4. The same as in Table 1, SUB 1 and SUB 2

are the two elite subsystems. We highlight two results from this table. First, the admission

exam score and GPA are important determinants of on-time graduation in all subsystems.

a ROL is the average of the previous year’s schools’ cutoffs listed in the ROL.
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Second, GPA has the largest effect on on-time graduation at elite schools.

Table 4: Sub-system level estimates

SUB 1 SUB 2 SUB 3 SUB 4 SUB 5 SUB 6 SUB 7 SUB 8 SUB 9

z-exam 0.019 0.051 0.028 0.137 0.095 0.090 0.053 0.086 0.022

(0.006) (0.007) (0.036) (0.023) (0.004) (0.003) (0.004) (0.004) (0.026)

z-gpa 0.226 0.224 0.193 0.191 0.142 0.150 0.128 0.124 0.161

(0.004) (0.004) (0.023) (0.013) (0.003) (0.003) (0.003) (0.003) (0.025)

Mean 0.531 0.509 0.543 0.379 0.301 0.537 0.388 0.364 0.488

N 33,762 20,892 882 2,077 34,384 51,190 39,245 33,586 699

Note: This table shows the marginal effects (at means) of probit on-time graduation models

by sub-system. The admission exam score (z-exam) and GPA (z-gpa) are standardized to

have a mean of zero and standard deviation of one. Each column includes the applicant’s

gender, age, parental income, and the characteristics of her ROL as additional regressors.

SUB 1 and SUB 2 are the elite sub-systems. Standard errors in parenthesis.

5.1 Results

Our counterfactual exercises result in different equilibrium allocations of students across

schools. We first analyze the changes in the composition of students allocated to elite schools

and then explore how these changes affect the on-time graduation rates at elite and non-elite

schools.

Figure 9 shows that the higher the weight in GPA, the higher the share of low-SES

students assigned to elite schools. Income is highly correlated with the admission exam

score but less correlated with GPA. The correlation between income and the admission

exam score can partially be explained by high-SES students accessing costly private exam

preparation institutions. Adding weight to GPA makes the admission exam score relatively

less important and increases low-SES students’ access to elite schools. Both low- and high-

SES students demand elite schools, but low-SES students have less access to them in the

baseline.

Figure 9 also shows that the higher the weight in GPA, the higher the share of girls

assigned to elite schools. This change occurs because girls list elite schools in their ROLs,
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Figure 9: Composition of students at elite schools
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Note: This figure shows the share of girls and low-SES students
admitted to elite schools in each counterfactual equilibrium asso-
ciated with a combination of weights on GPA and the admission
exam score. The x-axis indicates the weight on GPA (w). The
weight on the admission exam score is (1 − w). We define a low-
SES student as one whose family income is lower than 5000 Mexican
pesos per month (458 USD).

but the current admission policy limits their access. By adding weight to GPA, a measure

in which girls outperform boys (Figure 2), more girls gain access to elite schools.

Next, we explore changes in the composition of skills in elite schools. In Figure 10, we

show that as we increase the weight on GPA (relative to the admission exam score), the

average GPA of students at elite schools increases. In contrast, the average admission exam

score decreases. Interestingly, as we increase the weight on GPA, the average admission

score of elite school students decreases at a higher rate. Because the correlation between

the admission exam score and GPA is low, as the weight on GPA increases, an increasing

number of students with lower admission exam score gain access to elite schools.

In Figure 11, we show that the relationship between on-time graduation from an elite

school and the weight on GPA have a concave relationship. Since the admission exam score

and GPA are important determinants of on-time graduation from elite schools, the pattern

of changes in skills composition in Figure 10 implies that it is not necessarily optimal to put
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Figure 10: Skills of students at elite schools
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Note: This figure shows the average standardized admission exam
score and GPA of students admitted to elite schools in each coun-
terfactual equilibrium associated with a combination of weights
on GPA and the admission exam score. The x-axis indicates the
weight on GPA (w). The weight on the admission exam score is
(1− w).

all the weight on GPA. When the weight on GPA is too high, too many low admission exam

score students gain admission to elite schools, affecting the on-time graduation rate. Larger

changes in on-time graduation occur at elite schools because they are the most affected by

changes to the priority index, since most seat rationing applies to them. As we increase the

weight on GPA, the on-time graduation for non-elite schools is mostly unaffected, while the

overall on-time graduation in the system slightly increases.

Focusing on the on-time graduation rate at elite schools, in Figure 12, we show that

girls’ and low-SES students’ on-time graduation rates also have a concave relationship with

the weight on GPA. The on-time graduation rate for both groups of students reaches its

maximum when the weight on GPA and the admission exam score are equal.

Overall, our counterfactuals give us insight into the optimal weights in skill measures.

For example, consider that policymakers’ objectives are to increase the share of low-SES

students at elite schools, the share of females at elite schools, and maximize the elite schools’

on-time graduation rate. In this case, the optimal weights are 60% on GPA and 40% on the
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Figure 11: On-time graduation
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Note: This figure shows the average on-time graduation rate for
each counterfactual equilibrium associated with a combination of
weights on GPA and the admission exam score. We include this
average for three groups of schools: elite, non-elite, and all. We
define on-time graduation as graduating three years after admis-
sion, which reflects normal grade progression during high school.
The x-axis indicates the weight on GPA (w). The weight on the
admission exam score is (1− w).

admission exam score. However, if the objectives are to maximize the on-time graduation

rate of girls and low-SES students at elite schools, the optimal policy would put equal weight

on both skill measures.

6 Conclusions

How a central planner chooses to ration school seats in a centralized education system can

affect the equity of access and the on-time graduation rates. The relevance of this choice

is highlighted when a system priority ordering includes skill measures, and students have

diverse latent skills. In this case, a given priority ordering could match underprepared stu-

dents with the most academically demanding schools, affecting their on-time graduation

rate. Furthermore, priority orderings play an essential role when centralized education sys-

tems evaluations go beyond efficiency measures based on revealed preferences and consider
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Figure 12: On-time graduation at elite schools
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Note: This figure shows the average on-time graduation rate at
elite schools for each counterfactual equilibrium associated with
a combination of weights on GPA and the admission exam score.
We include this average for two groups of students: girls and low-
SES. We define on-time graduation as graduating three years af-
ter admission, which reflects normal grade progression during high
school. The x-axis indicates the weight on GPA (w). The weight on
the admission exam score is (1−w). We define a low-SES student
as one whose monthly family income is lower than 5000 Mexican
pesos (458 USD).

additional policy-relevant outcomes such as equity of access and on-time graduation rates.

We use administrative data from the centralized high school admission system in Mexico

City, where all schools share a priority ordering that relies solely on a standardized admission

exam. We study the effects of adding the information in middle school GPA to the priority

ordering. We focus on GPA because previous literature shows that grades measure non-

cognitive skills to a higher degree than achievement tests and that non-cognitive skills are a

strong predictor of educational success. We first show that students marginally admitted to

academically elite schools in this system experience a decrease in their on-time graduation

probability when they have a low middle school GPA and are unaffected when they have

a high middle school GPA. Our first set of results motivates the importance of using the

informational content of grades when considering how to admit students to schools.
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Guided by these results, we then study the effects of counterfactual admission policies

where the central planner increasingly adds weight to GPA in the priority order. We have

two important findings. First, the higher the weight on GPA, the higher the share of girls

and low-SES students admitted to elite schools. Behind this result is that girls have higher

GPAs than boys, and income is less correlated with GPA than the admission exam score.

Second, the on-time graduation rate at elite schools has a concave relationship with the

weight on GPA. When the weight on GPA is too high, too many low admission exam score

students gain access to elite schools, affecting the on-time graduation rate. Both GPA and

admission exam score are important determinants of on-time graduation from elite schools.

For a central planner that values equality of access and increasing the on-time graduation

rate at elite schools, the optimal weights for GPA and the admission exam score are 60%

and 40%, respectively.

A limitation of our study is that our counterfactual admission policies could induce be-

havioral responses that we are not currently considering. For example, they could affect

students’ effort allocation between exam preparation and middle school coursework by in-

creasing the effort allocated to coursework. In this paper, we assume that study effort does

not change. However, if increased study effort in middle school coursework leads to higher

study effort in high school coursework and time spent studying for coursework is more pro-

ductive than time spent studying for an admission exam, then our effect on the elite schools’

on-time graduation rate would be a lower-bound.9 As we also show in this paper, depend-

ing on their concerns regarding potential unintended responses, policymakers could flexibly

choose how to incorporate the information contained in GPA in a priority ordering.

From a policy perspective, our results indicate that combining the informational content

of GPA and the admission exam score in its priority ordering can benefit the centralized

system in Mexico City. More broadly, other centralized systems that rely on a unique

standardized exam to define school priorities could also benefit from adding some weight to

GPA. Examples of such systems are the centralized education systems in Romania, Kenya,

Trinidad and Tobago, Ghana, Barbados, and the college admission system in China.

9Stinebrickner and Stinebrickner [2006] show that coursework study effort is strongly correlated across
time between high school and college.
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Appendices

A The admission exam

Table 5: Exam sections

Questions

Math 12

Physics 12

Chemistry 12

Biology 12

Spanish 12

History 12

Geography 12

Civics and Ethics 12

Verbal ability 16

Math ability 16

Total 128

Note: This table shows the number of questions in different subjects that are part

of the admission exam.

The admission exam is a multiple choice exam with 128 questions and five choices per

question. Each correct answer is worth 1 point, and there are no negative points for wrong

answers. Table 5 shows the different sections of the admission exam. The total score is

calculated by adding up all the correct answers. Students must obtain a score no lower than

31 points in the admission exam to participate in the assignment process.

B Serial Dictatorship

All schools share a unique priority ordering, and each student defines her ROL. Then, the

matching algorithm is as follows:

• Step 1: The first ranked student is assigned to the first school on her ROL.

I



• Step (k+1): For any k ≥ 1, once the kth student in the priority ranking has been

assigned, the student ranked (k+1)th is assigned to the highest-ranked element of her

ROL that still has a vacancy. If all of the schools in her ROL are full at that point,

she is left unassigned, and the algorithm proceeds to the next student.

• Stop: The algorithm stops after all students have been processed.

Notice that this algorithm is a special case of the Student Proposing Deferred Acceptance

algorithm in which all schools share the same ranking of students.

C Predetermined covariates

Table 6: Female

female female P2 female P3 female HB female 2B

RD Estimate 0.011 0.004 0.001 0.012 0.014

(0.012) (0.015) (0.017) (0.022) (0.010)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 7: Age

age age P2 age P3 age HB age 2B

RD Estimate 0.022 0.044 0.014 0.002 0.022

(0.027) (0.036) (0.051) (0.052) (0.024)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

Table 8: GPA

gpa gpa P2 gpa P3 gpa HB gpa 2B

RD Estimate 0.026 0.028 0.025 0.010 0.022

(0.019) (0.021) (0.029) (0.039) (0.017)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 9: Income

inc5k inc5k P2 inc5k P3 inc5k HB inc5k 2B

RD Estimate -0.003 -0.004 -0.003 0.016 0.001

(0.014) (0.015) (0.019) (0.030) (0.012)

Note: Standard errors in parenthesis. Income is a dummy variable indicating if

the family monthly income is higher or lower that 5000 pesos.The first column show

the estimates of a local linear regression using the optimal bandwidth. The second

column uses a polynomial of degree two for the running variable. The third column

uses a polynomial of degree three for the running variable. The fourth column uses

a local linear regression within half the optimal bandwidth. The fifth column uses

a local linear regression within twice the optimal bandwidth.

Table 10: Siblings

siblings siblings P2 siblings P3 siblings HB siblings 2B

RD Estimate 0.013 0.019 0.025 0.084 0.009

(0.037) (0.043) (0.050) (0.077) (0.032)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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D RDD validity: low GPA

Figure 13: Density of the running variable, low GPA
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Note: This figure shows the density of the centered running vari-

able for low GPA students. The shaded regions are 95% confidence

intervals.

Table 11: Female

female female P2 female P3 female HB female 2B

RD Estimate 0.002 -0.008 -0.008 0.016 0.008

(0.016) (0.021) (0.023) (0.030) (0.014)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 12: Age

age age P2 age P3 age HB age 2B

RD Estimate 0.060 0.096 0.086 0.026 0.045

(0.050) (0.068) (0.080) (0.099) (0.044)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

Table 13: GPA

gpa gpa P2 gpa P3 gpa HB gpa 2B

RD Estimate 0.010 0.013 0.018 -0.005 0.007

(0.014) (0.016) (0.020) (0.030) (0.012)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 14: Income

inc5k inc5k P2 inc5k P3 inc5k HB inc5k 2B

RD Estimate -0.001 0.001 0.006 0.026 0.006

(0.021) (0.027) (0.030) (0.046) (0.018)

Note: Standard errors in parenthesis. Income is a dummy variable indicating if

the family monthly income is higher or lower that 5000 pesos.The first column show

the estimates of a local linear regression using the optimal bandwidth. The second

column uses a polynomial of degree two for the running variable. The third column

uses a polynomial of degree three for the running variable. The fourth column uses

a local linear regression within half the optimal bandwidth. The fifth column uses

a local linear regression within twice the optimal bandwidth.

Table 15: Siblings

siblings siblings P2 siblings P3 siblings HB siblings 2B

RD Estimate 0.032 0.056 0.126 0.213 0.025

(0.056) (0.069) (0.085) (0.122) (0.048)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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E RDD validity: high GPA

Figure 14: Density of the running variable, high GPA
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Note: This figure shows the density of the centered running vari-

able for high GPA students. The shaded regions are 95% confidence

intervals.

Table 16: Female

female female P2 female P3 female HB female 2B

RD Estimate 0.014 0.008 0.004 0.019 0.017

(0.016) (0.021) (0.025) (0.032) (0.014)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 17: Age

age age P2 age P3 age HB age 2B

RD Estimate 0.010 0.017 -0.016 -0.027 0.002

(0.031) (0.042) (0.058) (0.057) (0.028)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

Table 18: GPA

gpa gpa P2 gpa P3 gpa HB gpa 2B

RD Estimate 0.011 0.015 0.021 0.052 0.009

(0.015) (0.016) (0.023) (0.030) (0.013)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 19: Income

inc5k inc5k P2 inc5k P3 inc5k HB inc5k 2B

RD Estimate -0.006 -0.005 -0.000 0.004 -0.007

(0.018) (0.022) (0.027) (0.036) (0.016)

Note: Standard errors in parenthesis. Income is a dummy variable indicating if

the family monthly income is higher or lower that 5000 pesos.The first column show

the estimates of a local linear regression using the optimal bandwidth. The second

column uses a polynomial of degree two for the running variable. The third column

uses a polynomial of degree three for the running variable. The fourth column uses

a local linear regression within half the optimal bandwidth. The fifth column uses

a local linear regression within twice the optimal bandwidth.

Table 20: Siblings

siblings siblings P2 siblings P3 siblings HB siblings 2B

RD Estimate -0.008 -0.005 -0.024 -0.032 -0.014

(0.041) (0.060) (0.074) (0.078) (0.037)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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F Main Estimates

Table 21: On-time graduation

Grad Grad P2 Grad P3 Grad HB Grad 2B

RD Estimate -0.064 -0.061 -0.057 -0.050 -0.064

(0.012) (0.015) (0.018) (0.026) (0.011)

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

Table 22: On-time graduation by GPA

Grad Grad P2 Grad P3 Grad HB Grad 2B

High GPA 0.015 0.017 0.018 0.025 0.006

(0.017) (0.023) (0.025) (0.035) (0.015)

Low GPA -0.149 -0.148 -0.152 -0.127 -0.143

(0.018) (0.022) (0.023) (0.035) (0.014)

Diff 0.164 0.165 0.170 0.153 0.150

Diff SE 0.025 0.032 0.034 0.050 0.021

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Table 23: On-time graduation by gender

Grad Grad P2 Grad P3 Grad HB Grad 2B

Girls 0.011 0.018 0.022 0.018 -0.013

(0.020) (0.023) (0.027) (0.036) (0.015)

Boys -0.130 -0.134 -0.136 -0.121 -0.121

(0.019) (0.019) (0.025) (0.036) (0.015)

Diff 0.141 0.151 0.158 0.139 0.107

Diff SE 0.028 0.030 0.036 0.051 0.022

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

G RDD by low-stakes

Figure 15: Elite school admission and on-time graduation by low-stakes exam
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(a) On-time graduation: low low-stakes exam
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(b) On-time graduation: high low-stakes exam

score

Note: This figure shows binned means of on-time graduation around the elite admission thresholds

for students with high and low scores in the low-stakes standardized exam.
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Table 24: On-time graduation by low-stakes exam

Grad Grad P2 Grad P3 Grad HB Grad 2B

High LS -0.058 -0.057 -0.057 -0.055 -0.060

(0.017) (0.022) (0.026) (0.034) (0.015)

Low LS -0.073 -0.076 -0.064 -0.061 -0.068

(0.018) (0.023) (0.029) (0.038) (0.016)

Diff 0.015 0.019 0.007 0.006 0.008

Diff SE 0.025 0.032 0.039 0.051 0.022

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

H RDD by residuals

Define:

GPAi = α0 + α1si + α2lsi + ϵi, (7)

where si is the score in the admission exam score, lsi is the score in the low-stakes exam,

and GPAi is middle school GPA.

We estimate equation 7 and use ϵ̂i to define high and low residuals (above and below

median).
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Figure 16: Elite school admission and on-time graduation by GPA residuals
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(a) Graduation: low ϵ̂i
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(b) Graduation: high ϵ̂i

Note: This figure shows binned means of on-time graduation around the elite admission

thresholds for students with high and low GPA residuals.

Table 25: On-time graduation by GPA residuals

Grad Grad P2 Grad P3 Grad HB Grad 2B

High Resid 0.006 0.017 0.019 0.033 0.005

(0.016) (0.022) (0.025) (0.036) (0.015)

Low Resid -0.144 -0.146 -0.133 -0.121 -0.139

(0.017) (0.020) (0.025) (0.034) (0.014)

Diff 0.151 0.162 0.151 0.154 0.144

Diff SE 0.023 0.030 0.035 0.050 0.021

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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I Above and below-median within middle school GPA

distribution

Instead of separating students as having above or below median GPAs in the entire distribu-

tion of GPAs, we define above and below median GPA students relative to the distribution of

GPAs within their middle schools. We do this to control for middle school fixed-effects and

ensure that our results are not driven by attending particular subgroups of middle schools.

In Figure 17, we show that our previous results are unchanged by this alternative definition

of high and low GPA students.

Figure 17: Elite school admission and on-time graduation by GPA ranking
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(a) Graduation: low GPA ranking
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(b) Graduation: high GPA ranking

Note: This figure shows binned means of on-time graduation around the elite admission

thresholds for students above and below median within middle school percentile ranking by

GPA.
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Table 26: On-time graduation by GPA ranking

Grad Grad P2 Grad P3 Grad HB Grad 2B

High Rank 0.010 0.010 0.013 0.025 0.001

(0.018) (0.022) (0.023) (0.034) (0.015)

Low Rank -0.155 -0.150 -0.149 -0.128 -0.148

(0.018) (0.023) (0.025) (0.036) (0.015)

Diff 0.165 0.160 0.162 0.153 0.149

Diff SE 0.025 0.032 0.034 0.050 0.021

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.

J Elite schools with high and low cut-offs

For the RDD analysis we pool k groups of students that share a common elite school cut-

off ck. In this appendix we show that the effects on on-time graduation do not depend

on elite schools having high or low cut-offs. Instead of pooling together our k groups, we

separate these groups into low and high elite school cut-offs and repeat the analysis for each

sub-sample.
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Figure 18: Elite school admission and on-time graduation: low elite cut-offs
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(a) Graduation: low GPA
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(b) Graduation: high GPA

Note: This figure shows binned means of on-time graduation around low elite school ad-

mission thresholds.

Table 27: On-time graduation, low elite cut-offs

Grad Grad P2 Grad P3 Grad HB Grad 2B

High GPA 0.044 0.048 0.051 0.018 0.025

(0.028) (0.035) (0.041) (0.052) (0.022)

Low GPA -0.166 -0.181 -0.135 -0.147 -0.159

(0.026) (0.027) (0.038) (0.048) (0.019)

Diff 0.210 0.230 0.186 0.165 0.183

Diff SE 0.038 0.044 0.056 0.071 0.029

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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Figure 19: Elite school admission and on-time graduation on time: high elite cut-offs
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(a) Graduation: low GPA
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(b) Graduation: high GPA

Note: This figure shows binned means of on-time graduation around high elite

school admission thresholds.

Table 28: On-time graduation, high elite cut-offs

Grad Grad P2 Grad P3 Grad HB Grad 2B

High GPA -0.005 -0.007 -0.014 0.052 -0.007

(0.026) (0.030) (0.037) (0.054) (0.022)

Low GPA -0.121 -0.113 -0.107 -0.094 -0.125

(0.028) (0.034) (0.038) (0.059) (0.023)

Diff 0.116 0.106 0.094 0.146 0.118

Diff SE 0.038 0.046 0.053 0.080 0.032

Note: Standard errors in parenthesis. The first column show the estimates of

a local linear regression using the optimal bandwidth. The second column uses

a polynomial of degree two for the running variable. The third column uses a

polynomial of degree three for the running variable. The fourth column uses a local

linear regression within half the optimal bandwidth. The fifth column uses a local

linear regression within twice the optimal bandwidth.
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K GPA and gender

To compare two subgroups while holding another observable characteristic constant, we

follow the approach proposed by Gerardino et al. [2017]. For example, in our case, the

subgroup of students with high GPAs has a higher share of girls than those with low GPAs.

Thus, the method allows us to reweight the observations to keep gender balanced across

subgroups while studying heterogeneous effects between high- and low-GPA students.

Table 29: RDD estimates using propensity score weighting

(1) (2)

Gender balanced GPA balanced

Low GPA -0.110

(0.017)

High GPA -0.017

(0.012)

Boys -0.077

(0.015)

Girls -0.047

(0.016)

Diff .093 .029

(.023) (.023)

Note: The outcome for all columns is on-time graduation. The first column shows

RDD estimates for low and high GPA students while holding gender balanced across

subgroups. The second column shows RDD estimates for boys and girls while

holding GPA balanced across subgroups. Diff indicates the difference in treatment

effects across subgroups. Standard errors in parenthesis.

L RGPA

In this section, we include the results of a counterfactual analysis that increasingly adds

weight to applicants’ within-middle school percentile ranking.
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Figure 20: Composition of students at elite schools
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Note: This figure shows the share of girls and low-SES students

admitted to elite schools in each counterfactual equilibrium asso-

ciated with a combination of weights on RGPA and the admission

exam score. The x-axis indicates the weight on RGPA (w). The

weight on the admission exam score is (1−w). We define a low-SES

student as one whose family income is lower than 5000 Mexican pe-

sos per month (458 USD).
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Figure 21: Skills of students at elite schools
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Note: This figure shows the average standardized admission exam

score and RGPA of students admitted to elite schools in each coun-

terfactual equilibrium associated with a combination of weights on

RGPA and the admission exam score. The x-axis indicates the

weight on RGPA (w). The weight on the admission exam score is

(1− w).
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Figure 22: On-time graduation
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Note: This figure shows the average on-time graduation rate for

each counterfactual equilibrium associated with a combination of

weights on RGPA and the admission exam score. We include this

average for three groups of schools: elite, non-elite, and all. We

define on-time graduation as graduating three years after admis-

sion, which reflects normal grade progression during high school.

The x-axis indicates the weight on RGPA (w). The weight on the

admission exam score is (1− w).
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Figure 23: On-time graduation at elite schools
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Note: This figure shows the average on-time graduation rate at

elite schools for each counterfactual equilibrium associated with a

combination of weights on RGPA and the admission exam score.

We include this average for two groups of students: girls and low-

SES. We define on-time graduation as graduating three years af-

ter admission, which reflects normal grade progression during high

school. The x-axis indicates the weight on RGPA (w). The weight

on the admission exam score is (1 − w). We define a low-SES

student as one whose monthly family income is lower than 5000

Mexican pesos (458 USD).

M CGPA

In this section, we include the results of a counterfactual analysis that increasingly adds

weight to applicants’ GPAs clean of middle school fixed effects. To implement this alterna-

tive, we regress GPA on the low-stakes exam and middle school fixed-effects as in Equation

8. We then subtract the middle school effects from GPA to obtain a measure we call CGPA.

XXIII



GPAim = αm + βlsi + νim (8)

CGPAim = GPAim − α̂m, (9)

where i indicates student and m indicates middle school.

Figure 24: Composition of students at elite schools
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Note: This figure shows the share of girls and low-SES students

admitted to elite schools in each counterfactual equilibrium asso-

ciated with a combination of weights on CGPA and the admission

exam score. The x-axis indicates the weight on CGPA (w). The

weight on the admission exam score is (1−w). We define a low-SES

student as one whose family income is lower than 5000 Mexican pe-

sos per month (458 USD).
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Figure 25: Skills of students at elite schools
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Note: This figure shows the average standardized admission exam

score and GPA of students admitted to elite schools in each coun-

terfactual equilibrium associated with a combination of weights on

CGPA and the admission exam score. The x-axis indicates the

weight on CGPA (w). The weight on the admission exam score is

(1− w).
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Figure 26: On-time graduation
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Note: This figure shows the average on-time graduation rate for

each counterfactual equilibrium associated with a combination of

weights on CGPA and the admission exam score. We include this

average for three groups of schools: elite, non-elite, and all. We

define on-time graduation as graduating three years after admis-

sion, which reflects normal grade progression during high school.

The x-axis indicates the weight on CGPA (w). The weight on the

admission exam score is (1− w).
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Figure 27: On-time graduation at elite schools
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Note: This figure shows the average on-time graduation rate at

elite schools for each counterfactual equilibrium associated with a

combination of weights on CGPA and the admission exam score.

We include this average for two groups of students: girls and low-

SES. We define on-time graduation as graduating three years af-

ter admission, which reflects normal grade progression during high

school. The x-axis indicates the weight on CGPA (w). The weight

on the admission exam score is (1 − w). We define a low-SES

student as one whose monthly family income is lower than 5000

Mexican pesos (458 USD).
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