

Hard Condensed Matter

Hard Condensed Matter

- Part of SOPA's Institute for Condensed Matter and Complex Systems
- 15+ Academic staff
- 10+ Postdoctoral fellows
- 20 PhD students
- Research Themes:
 - Extreme Conditions Physics
 - Quantum Ordering
 - Computational Materials Science

Centre for Science at Extreme Conditions (CSEC)

- Interdisciplinary research centre
 - 5 Schools from College of Science and Engineering
- In top-3 of academic high-pressure research centres
- 35+ Academic staff, 30 Postdocs, 70 PhD students

Centre for Science at Extreme Conditions (CSEC)

Synthesis

- Multi anvil presses
- Diamond anvil cells
- Crystal growth •

Characterization

- **Optical spectroscopy** •
- **FIB-SEM** •
- Dilution refrigerator ٠
- PPMS •

Central Facilities Work

X-ray free electron lasers

Synchrotrons

Large laser facilities

Multi-megabar pressures

- Static compression
 - Diamond anvil cells
- Dynamic compression
 - Laser-induced shock waves

Planetary interiors

High-pressure chemical physics

- Technological impact
 - Novel gas hydrates
 - Hydrogen Storage
 - Carbon Sequestration
- Fundamental science
 - Miscibility
 - Planetary Mineralogy
 - Abiogenesis

Quantum Ordering

Research Areas

- Non-conventional superconductivity
- Complex Magnetism, quantum criticality
- Ferroelectric Semiconductors
- 2D materials

Experimental Techniques

- Crystal growth
- Low temperatures (10 mK) and high magnetic fields (17 T)
- Scattering and transport measurements
- Central facility work (UK, Europe, USA).

Quantum Ordering

Computation and theory

Electronic structure calculations

• Exotic magnetism, superconductivity

Atomistic spin dynamics modelling

- 2D materials/magnets
- Optical and excitonic properties

- Functional materials for energy-efficient applications
- Make smart devices smarter

Model Hamiltonian studies

• Non-Fermi liquids, Kondo physics

Computational Materials Science

Electronic structure calculations

- High pressure: new states of matter
- High temperature: planetary interiors

Machine learning

- Interatomic force fields
- Phase transitions, phase diagrams

Get Involved

- Discover supervisors and projects
 - <u>https://www.ph.ed.ac.uk/icmcs/research-themes</u>
- Apply by 17th January 2025
 - <u>https://www.ph.ed.ac.uk/studying/postgraduate-research/how-apply</u>
- Questions?
 - SOPA Graduate School, <u>gradschool.physics@ed.ac.uk</u>
 - PhD in hard-CM, <u>a.hermann@ed.ac.uk</u>

