News

Quest for new drugs could be helped by cell discovery

Scientists have made a key discovery that could speed up the production of cells in the lab for studying diseases such as multiple sclerosis and Parkinson’s disease.

Experts say it could also help to boost supplies of cells for use in drug discovery research and could eventually aid production of cells for use as therapies.

Efficiency boost

Researchers at the University of Edinburgh have pinpointed two molecules that boost reprogramming of cells – a process through which cells of one type can be converted to another.

The molecules – called SMAD2 and SMAD3 – can enhance the efficiency of converting mature cells into induced pluripotent stem cells, which have the distinctive ability to become any type of cell found in the body.

Cell conversion

The team at the University’s Medical Research Council Centre for Regenerative Medicine were surprised to find the molecules can also boost direct conversions from one type of mature cell to another – including transforming skin cells into brain cells.

Half the time

Usually, converting human skin cells to functional brain cells in a dish takes around 50 days.

The team found that adding either of the two molecules into a dish with the cells cuts the time taken to just 25 days.

We have shown it is possible to boost reprogramming of diverse cell types using a single molecule. We hope this will stimulate further research to find other molecules that could have a similar – or even better – effect.

Professor Keisuke KajiMedical Research Council Senior Fellow, University of Edinburgh

Boost supplies

Scientists use cell reprogramming techniques to produce cells in the lab so that they can study diseases.

Such cells are also used for drug discovery and for screening new medicines for potential toxic effects.

Progress

The approach is particularly helpful for producing cells that cannot be obtained from patient samples, such as brain cells.

Dr Rob Buckle, Chief Science Officer at the Medical Research Council, said pluripotent stem cells offer great potential for developing new treatments for a wide range of currently untreatable diseases. He said the discovery of these two molecules represents "real progress for the field."

The study, published in the journal Cell Stem Cell, was funded by the European Research Council, Biotechnology and Biological Sciences Research Council, Medical Research Council, Swedish Research Council and Wellcome. 

Related links

Journal article

MRC Centre for Regenerative Medicine

Edinburgh Medical School

Image credit: iStock.com/Catalin_Rusnac