MRC Human Genetics Unit
Medical Research Council Human Genetics Unit

Quantitative Trait Loci Research Group

Quantitative Traits in Health and Disease

Section: Biomedical Genomics

left to right: Professor Chris Haley, Dr Veronique Vitart, Professor Caroline Hayward, Professor Jim Wilson

Research in a Nutshell 

  • Understanding genetic architecture of complex traits, using kinship-structured and isolate populations with very rich phenotypes, particularly in terms of “omics.”
  • Population cohorts include:
    • Orkney Complex Disease Study (ORCADES) and VIKING Health Study Shetland, collectively “Viking”
    • Recruitment of a further 4,000 volunteers with Northern Isles ancestry to our new online cohort, VIKING II
    • CROATIA-Split, CROATIA-Korcula and CROATIA-Vis
    • Generation Scotland
  • Coordination of and contribution to genetic analyses in international consortia
  • Return of actionable genetic results to research participants
  • For data and sample access, or if you have any questions, email: 

Research Programme

QTL group 6.2019



Professor Chris Haley

Co-Principal Investigator
Professor Caroline Hayward

Co-Principal Investigator

Dr Veronique Vitart

Co-Principal Investigator

Professor Jim Wilson

Co-Principal Investigator

Dr Shona Kerr Project Manager
Dr Thibaud Boutin Data Analyst
Dr Lucija Klaric UKRI Rutherford Fund Fellow
Dr Andrew Bretherick ECAT Fellow
Dr Pau Navarro Research Scientist
Dr Chloe Stanton Investigator Scientist
Dr Zuhair Mustafa ECAT PhD student
David Buchanan Data Manager
Anne Richmond Data Analyst
Camilla Drake Research assistant
Rachel Edwards Administrator
Bailey Harrington Research Student
Dr Paul Timmers Data Analyst


Research in Detail

The QTL (Quantitative Trait Locus) programme has recruited thousands of people to its Scottish and Croatian cohorts. Their special population structures help to improve biological understanding of the causes of variation in complex traits.

Genome – Wide Association Studies (GWAS) have identified many common variants contributing to complex disease. However, a substantial part of genetics in disease remains hidden in rare variants that cannot be easily detected through traditional GWAS.

Rare variants can increase in frequency by drift in isolated populations, facilitating their detection. Due to this, our cohorts focus on these isolated populations.

Rare variants tend to have strong effects, therefore are important for risk stratification in precision medicine. This means they are also well suited to functional follow-up studies.

Our cohorts have a kinship-based structure. This allows us to identify the contribution of genetic variation associated with extended pedigrees.  This helps further understand the role of family environments and their environmental variables, which is crucial for future predictive medicine.

The QTL group also leads collaborative research. We integrate biochemical measures with “omics” data, to understand genes affecting a wide range of traits and disease, including uric acid metabolism, kidney function, eye disease and obesity. Discovering these genes and other traits pinpoints important biological pathways and molecular mechanisms.

All data and samples are generated in line with the Medical Research Council’s (MRC) policy on data sharing in human population cohorts.

Key Publications

Data and Sample Access

The CROATIA, VIKING and Generation Scotland study data have been the subject of many internal and external collaborations. We welcome more applications to work with us on our datasets. Written and broad informed consent was obtained from all participants. Summary data from specific projects have been deposited in the University of Edinburgh DataShare repository.

University of Edinburgh DataShare Repository

We have generated exome sequence data across our cohorts and whole genome sequence data is available for ORCADES, Shetland and CROATIA-Korcula. These datasets have been deposited in the European Genome-phenome Archive under the management of the QTL data access committee.

European Genome-phenome Archive

More details about the Viking Genes cohorts are available on the study website and the HDR-UK Gateway Health Data Research Innovation Gateway (

If you wish to work with any of these datasets, you can email:

Sharing of data and samples is facilitated by a full-time project manager. All agreed proposals are conducted in collaboration with appropriate members of the QTL team.


  • Institute of Genetics and Cancer, University of Edinburgh: Prof Tim Aitman, Prof Wendy Bickmore, Prof Helen Colhoun, Prof Malcolm Dunlop, Dr Toby Hurd, Prof Andrew Jackson, Prof David Porteous, Dr Philip Riches, Prof Colin Semple, Prof Martin Taylor, Dr Pippa Thomson
  • University of Edinburgh: Prof Harry Campbell, Prof Ian Deary, Prof Andrew McIntosh, Prof Nik Morton, Prof Igor Rudan
  • University of Glasgow: Prof Ruth Jarrett (Institute of Infection, Immunity and Inflammation)
  • University of Aberdeen and NHS Grampian: Prof Zosia Miedzybrodzka, Dr John Dean
  • University of Split, Croatia: Dr Ozren Polasek and Dr Ivana Kolcic  (Public Health Sciences)
  • University of Zagreb, Croatia: Prof Gordan Lauc (Faculty of Pharmacy and Biochemistry)
  • University of Zurich, Switzerland: Prof Olivier Devuyst, Prof Murielle Bochud
  • University of Leicester, Leicester, UK: Prof Martin Tobin
  • University of Lausanne, Switzerland: Prof Zoltan Kutalik (Swiss Institute of Bioinformatics)
  • University of Otago, New Zealand: Prof Tony Merriman (School of Medical Sciences)
  • University of Tartu, Estonia: Prof Tonu Esko, Dr Krista Fischer (Estonian Genome Centre)
  • University of Helsinki, Finland: Prof Markus Perola, Dr Hannele Mattson (Finnish Institute of Molecular Medicine)
  • University of Uppsala, Sweden: Prof Ulf Gyllensten, Dr Asa Johansson (Science for Life Laboratory)

Partners and Funders

  • MRC
  • Generation Scotland
  • Scottish Genomes Partnership

Scientific Themes

Quantitative traits, isolate populations, disease mechanisms, genetic risk factors, DNA sequence analysis, deep phenotyping, linkage, omics, genetic architecture, homozygosity, Y chromosome

Technology Expertise

GWAS, genomics, imputation, statistical genetics, population genetics, electronic health record linkage, population cohort recruitment and biobanking