Brain Cooling in Traumatic Brain Injury and Stroke

Bridget Harris, PhD, RGN
Clinical Research Specialist, NHS Lothian
Research Fellow, University of Edinburgh
Content

• Therapeutic temperature reduction after acute cerebral insults - evidence and practice - normothermia, hypothermia

• Terminology and scope

• Systemic versus brain cooling – why brain cooling?

• Methods of non-invasive brain cooling – pros and cons

• Temperature measurement

• Effect of therapeutic brain cooling on temperature – clinical studies

• Future directions
Terminology and scope

• Selective brain cooling vs therapeutic brain cooling – terminology

• Therapeutic brain cooling methods
 – Invasive
 • neuroprotection during surgery e.g. antegrade cerebral perfusion for aortic arch surgery
 – Non-invasive
 • Nasal/pharyngeal cooling
 • External head cooling

• Therapeutic brain cooling – acute cerebral insults - global and focal – normothermia, hypothermia
Evidence for therapeutic temperature reduction in acute global cerebral insults

• Comatose survivors of cardiac arrest (VF), neonatal hypoxic ischaemic injury
 – therapeutic hypothermia reduces mortality, improves functional outcome

• In these conditions therapeutic hypothermia is recommended as part of standard care
Evidence for therapeutic temperature reduction in acute focal cerebral insults

Traumatic brain injury (TBI), stroke

- experimental evidence
 - improved outcome with normothermia and hypothermia
 - multifactorial neuroprotective effects (early)
 - prevention and reduction of secondary insults

 (Dietrich & Bramlett *Prog Brain Res* 2007;162:201-17; van der Worp et al. *Brain* 2007;130:3063-74)

- human evidence
 - increased temperature is common and associated with worse outcome - death and disability
 (e.g. Greer et al. 2008 Stroke 39:3029-35)
 - insufficient evidence that therapeutic temperature modulation - normothermia or hypothermia - improves outcome

 - normothermia is standard practice +/- hypothermia for refractory raised intracranial pressure

 - shivering
Systemic cooling versus brain cooling – why brain cooling?

Systemic methods – drugs (e.g. acetaminophen), cooling blankets/pads, intravenous cooling catheters – side effects

Brain cooling – nasal/pharyngeal cooling and external head cooling – rationale

- Brain cooling has fewer side-effects than systemic hypothermia e.g. infection – some studies use body warming (Feigin et al. *J Clin Neurosci* 2002;9:502-7; Gluckman et al. *Lancet*;365:663-70; Harris et al. *J Neurosurg* 2009;110:1256-64)

- Preferential cooling of cortices (external cooling) of benefit (Wityk *Crit Care Med* 1994;8:1278-93)

- Little evidence in humans (Harris et al. *HTA* 2012;16;1-175)
Methods of non-invasive brain cooling – pros and cons

Nasal/pharyngeal cooling – induce heat loss from the upper airways by
- convection +/- evaporation e.g. nasal gas flow, nasal lavage
- conduction e.g. nasal or pharyngeal balloons

External head cooling – induce heat loss through the skull by
- convection +/- evaporation e.g. fanning,
- conduction e.g. circulating liquid cooling helmet (active), ice packs/frozen gel helmet (passive)

Pros and cons
Temperature

• Temperature measurement sites
 – Intracranial
 – Tympanic
 – Magnetic resonance spectroscopy
 – Core body – PA, oesophagus, bladder, rectum – best proxy

• Effectiveness of brain cooling in reducing temperature (Harris et al. HTA 2012;16(45)1-175)
Summary of average temperature reduction with therapeutic cranial cooling
(studies reporting temperature reduction achieved)

<table>
<thead>
<tr>
<th>Head cooling method</th>
<th>Cooling duration</th>
<th>Intracranial temp reduction (total cooled pts)</th>
<th>Core body temp reduction (total cooled pts)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rhinochill (upper airways) (Andreas 2008, Busch 2010, Abou-Chebl 2011)</td>
<td>60 mins</td>
<td>1.4 °C (n=11)</td>
<td>1.1–1.3 °C* (n=106)</td>
</tr>
<tr>
<td>Quickcool nasal balloons (Springborg et al 2013)</td>
<td>72 hr</td>
<td>~1 °C (n=6)</td>
<td>~1 °C (n=9)</td>
</tr>
<tr>
<td>Nasal airflow + head fanning (Harris 2007)</td>
<td>30 mins</td>
<td>0.41 °C (n=12)</td>
<td>0.32 °C (n=12)</td>
</tr>
<tr>
<td>Gel head and neck (Sovika) (Poli et al 2013)</td>
<td>~50 mins</td>
<td>0.36 °C (n=11)</td>
<td>0.25 °C (n=11)</td>
</tr>
<tr>
<td>Circulating liquid head and neck (Wang 2004, Harris 2009, Gaida 2008, TraumaTec Neuro ICU study/Miller 2009)</td>
<td>1–24 hr</td>
<td>1–2 °C (n=34)</td>
<td>0.8 °C (n=6)</td>
</tr>
</tbody>
</table>

* includes mean and median data, all other temperatures are mean reductions
Rhinochill Intranasal Cooling Device
Benechill, Inc. USA
Mean temperature reductions during the 1-hour RhinoChill induction

Mean temperature reductions during 1-hour cooling with RhinoChill
ICT = intracranial temperature (Abou-Chebl et al. Stroke 2011;42:2164-9)
QuickCool nasal balloons

QuickCool AB, Lund
Fig. 2 Median temperature in the cerebrum in the first 72 h of cooling. As indicated by the linear regression line a temperature level of 37°C was not reached within 72 h of cooling ($y = -0.012x + 38.814$, $R^2 = 0.111$, $p < 0.0001$) (n=6)

Springborg et al. *Neurocrit Care* 2013; 18(3):400-5
12 pts – traumatic brain injury or subarachnoid haemorrhage

Intracranial temperature reduction compared to baseline with:

1. no intervention
2. nasal airflow - twice minute volume (≤24 L) + 20ppm NO
3. bilateral head fanning (ambient air approximately 8 m s⁻¹)
4. airflow plus fanning

(Harris et al. *Br J Anaesth* 2007;98:93-9)
MedCool Device

Forced convective device - soft, fabric helmet

CoolSystem Discrete Cerebral Hypothermia Device

(Harris et al. J Neurosurg 2009;110:1256-64)
12 pts – traumatic brain injury – 12 head cooled, 13 controls
Mean intracranial temperatures in cooled (cap) vs not cooled (no cap)
After 24 hours, cooled group intracranial temperature 1.2°C lower than controls
(Harris et al. *J Neurosurg* 2009 110;1256-64)
Sovika head and neck cooling device (Sovika GmbH)

(Poli et al. Stroke 2013;44:708-13)
Brain, bladder, and tympanic temperatures – stroke patients

(Poli et al. *Stroke* 2013;44:708-13)
Future directions

• Non-invasive methods of measuring intracranial temperature – continuous measurement

• Device development

• Higher quality studies – temp reporting, outcome
 – complications of cranial cooling vs systemic cooling
 – cranial cooling to reduce intracranial pressure

• Standardardised terminology for therapeutic cranial cooling and methods
Thank you

Systematic review of head cooling in adults after traumatic brain injury and stroke

Harris, Andrews, Murray, Forbes, Moseley

Health Technology Assessment 2012;16(45):1-175

can be downloaded without charge from:

www.hta.ac.uk/1777

Project funded by the UK National Institute for Health Research Health Technology Assessment Programme, project number 07.37.32