Week 3 Quiz: Differential Calculus: The Derivative and Rules of Differentiation

SGPE Summer School 2016

Limits

Question 1: Find $\lim_{x\to 3} f(x)$:

$$f(x) = \frac{x^2 - 9}{x - 3}$$

 $(A) + \infty$

(B) - 6

(C) 6

(D) Does not exist!

(E) None of the above

Answer: (C) Note the function $f(x) = \frac{x^2-9}{x-3} = \frac{(x-3)(x+3)}{x-3} = x+3$ is actually a line. However it is important to note the this function is *undefined* at x = 3. Why? x = 3 requires dividing by zero (which is inadmissible). As x approaches 3 from below and from above, the value of the function f(x) approaches f(3) = 6. Thus the limit $\lim_{x\to 3} f(x) = 6$.

Question 2: Find $\lim_{x\to 2} f(x)$:

$$f(x) = 1776$$

- $(A) + \infty$
- (B) 1770
- (C) $-\infty$
- (D) Does not exist!
- (E) None of the above

Answer: (E) The limit of any constant function at any point, say f(x) = C, where C is an arbitrary constant, is simply C. Thus the correct answer is $\lim_{x\to 2} f(x) = 1776$.

Question 3: Find $\lim_{x\to 4} f(x)$:

$$f(x) = ax^2 + bx + c$$

 $(A) + \infty$

- (B) 16a + 4b + c
- (C) $-\infty$

(D) Does not exist!

(E) None of the above

Answer: (B) Applying the rules of limits:

$$\lim_{x \to 4} ax^2 + bx + c = \lim_{x \to 4} ax^2 + \lim_{x \to 4} bx + \lim_{x \to 4} c$$
$$= a \left[\lim_{x \to 4} x \right]^2 + b \lim_{x \to 4} x + c$$
$$= 16a + 4b + c$$

Question 4: Find the limits in each case:

- (i) $\lim_{x \to 0} \frac{x^2}{|x|}$
- (ii) $\lim_{x \to 3} \frac{2x+3}{4x-9}$
- (iii) $\lim_{x \to 6} \frac{x^2 3x}{x + 3}$

Answer: (i) $\lim_{x \to 0} \frac{x^2}{|x|} = \lim_{x \to 0} \frac{(|x|)^2}{|x|} = \lim_{x \to 0} |x| = 0$

- (*ii*) $\lim_{x \to 3} \frac{2x+3}{4x-9} = \frac{2 \cdot 3+3}{4 \cdot 3-9} = 3$
- (*iii*) $\lim_{x \to 6} \frac{x^2 3x}{x + 3} = \frac{6^2 3 \cdot 6}{6 + 3} = 2$

Question 5: Show that $\lim_{x \to 0} \sin x = 0$ (Hint: $-x \le \sin x \le x$ for all $x \ge 0$.)

Answer: Given hint and squeeze theorem we have $\lim_{x\to 0} -x = 0 \le \lim_{x\to 0} \sin x \le 0 = \lim_{x\to 0} x$ hence, $\lim_{x \to 0} \sin x = 0$

Question 6: Show that $\lim_{x \to 0} x \sin(\frac{1}{x}) = 0$

Answer: Note first that for any real number t we have $-1 \le \sin t \le 1$ so $-1 \le \sin(\frac{1}{x}) \le 1$. Therefore, $-x \le x \sin(\frac{1}{x}) \le x$ and by squeeze theorem $\lim_{x \to 0} x \sin \frac{1}{x} = 0$.

Continuity and Differentiability

Question 7: Which of the following functions are *NOT* everywhere continuous:

(A) $f(x) = \frac{x^2 - 4}{x + 2}$

- (B) $f(x) = (x+3)^4$
- (C) f(x) = 1066
- (D) f(x) = mx + b
- (E) None of the above

Answer: (A) Remember that, informally at least, a *continuous* function is one in which there are no breaks its curve. A continuous function can be drawn without lifting your pencil from the paper. More formally, a function f(x) is *continuous* at the point x = a if and only if:

- 1. f(x) is defined at the point x = a,
- 2. the limit $\lim_{x\to a} f(x)$ exists,

3.
$$\lim_{x \to a} f(x) = f(a)$$

The function $f(x) = \frac{x^2-4}{x+2}$ is not everywhere continuous because the function is not defined at the point x = -2. It is worth noting that $\lim_{x\to -2} f(x)$ does in fact exist! The existence of a limit at a point does not guarantee that the function is continuous at that point!

Question 8: Which of the following functions are continuous:

(A) f(x) = |x|(B) $f(x) = \begin{cases} 3 & x < 4\\ \frac{1}{2}x + 3 & x \ge 4 \end{cases}$ (C) $f(x) = \frac{1}{x}$ (D) $f(x) = \begin{cases} \ln x & x < 0\\ 0 & x = 0 \end{cases}$

(E) None of the above

Answer: (A) The absolute value function f(x) = |x| is defined as:

$$f(x) = \begin{cases} x & x \ge 0\\ -x & x < 0 \end{cases}$$

Does this function satisfy the requirements for continuity? Yes! The critical point to check is x = 0. Note that the function is defined at x = 0; the $\lim_{x\to 0} f(x)$ exists; and that $\lim_{x\to 0} f(x) = 0 = f(0)$.

Question 9: Which of the following functions are *NOT* differentiable:

- (A) f(x) = |x|
- (B) $f(x) = (x+3)^4$
- (C) f(x) = 1066
- (D) f(x) = mx + b
- (E) None of the above

Answer: (A) Remember that continuity is a *necessary* condition for differentiability (i.e., every differentiable function is continuous), but continuity is not a *sufficient* condition to ensure differentiability (i.e., not every continuous function is differentiable). Case in point is f(x) = |x|. This function is in fact continuous (see previous question). It is not however differentiable at the point x = 0. Why? The point x = 0 is a cusp (or kink). There are an infinite number of lines that could be tangent to the function f(x) = |x| at the point x = 0, and thus the derivative of f(x) would have an infinite number of possible values.

Question 10: Is function

$$f(x) = \begin{cases} 0 & : x = 0 \\ x \sin(1/x) & : x \neq 0 \end{cases}$$

continuous at point 0?

Answer: Note that f is continuous at a point a if

$$\lim_{x \to a} f(x) = f(\lim_{x \to a} x).$$

In this case, we take a = 0 and

$$\lim_{x \to 0} f(x) = \lim_{x \to 0} x \sin(1/x) = 0$$

by question 6. Moreover,

 $f(\lim_{x \to 0} x) = f(0) = 0$

thus, f is continuous at 0.

Derivatives

Question 11: Find the derivative of the following function:

$$f(x) = 1963$$

 $(A) + \infty$

- (B) 1963
- (C) $-\infty$
- (D) 0
- (E) None of the above
- Answer: (D) The derivative of a constant function is always zero.

Question 12: Find the derivative of the following function:

$$f(x) = x^2 + 6x + 9$$

- (A) f'(x) = 2x + 6 + 9
- (B) $f'(x) = x^2 + 6$
- (C) f'(x) = 2x + 6
- (D) f'(x) = 2x
- (E) None of the above

Answer: (C) Remember that 1) the derivative of a sum of functions is simply the sum of the derivatives of each of the functions, and 2) the power rule for derivatives says that if $f(x) = kx^n$, then $f'(x) = nkx^{n-1}$. Thus $f'(x) = 2x^{2-1} + 6x^{1-1} + 0 = 2x + 6$.

Question 13: Find the derivative of the following function:

$$f(x) = x^{\frac{1}{2}}$$

- (A) $f'(x) = -\frac{1}{2\sqrt{x}}$
- (B) $f'(x) = \frac{1}{\sqrt{x}}$
- (C) $f'(x) = \frac{1}{2\sqrt{x}}$
- (D) $f'(x) = \sqrt{x}$
- (E) None of the above

Answer: (C) Remember that the power rule for derivatives works with fractional exponents as well! Thus $f'(x) = \frac{1}{2}x^{\frac{1}{2}-1} = \frac{1}{2}x^{-\frac{1}{2}} = \frac{1}{2\sqrt{x}}$.

Question 14: Find the derivative of the following function:

 $f(x) = 5x^2(x+47)$

(A) $f'(x) = 15x^2 + 470x$ (B) $f'(x) = 5x^2 + 470x$ (C) f'(x) = 10x(D) $f'(x) = 15x^2 - 470x$ **Answer:** (A) Ideally, you would solve this problem by applying the product rule. Set $g(x) = 5x^2$ and h(x) = (x + 47), then f(x) = g(x)h(x). Apply the product rule:

$$f'(x) = g'(x)h(x) + g(x)h'(x)$$

= 10x(x + 47) + 5x²(1)
= 10x² + 470x + 5x²
= 15x² + 470x

Question 15: Find the derivative of the following function:

$$f(x) = \frac{5x^2}{x+47}$$

- (A) $f'(x) = \frac{5x^2 470x}{(x+47)^2}$
- (B) $f'(x) = \frac{10x^2 + 470x}{(x+47)}$
- (C) f'(x) = 10x
- (D) $f'(x) = \frac{5x^2 + 470}{(x+47)^2}$
- (E) None of the above

Answer: (A) Ideally, you would solve this problem by applying the quotient rule. Set $g(x) = 5x^2$ and h(x) = (x + 47), then $f(x) = \frac{g(x)}{h(x)}$. Apply the quotient rule:

$$f'(x) = \frac{g'(x)h(x) - g(x)h'(x)}{h(x)^2}$$
$$= \frac{10x(x+47) - 5x^2(1)}{(x+47)^2}$$
$$= \frac{10x^2 + 470x - 5x^2}{(x+47)^2}$$
$$= \frac{5x^2 + 470x}{(x+47)^2}$$

Question 16: Find the derivative of the following function:

$$f(x) = 5(x+47)^2$$

- (A) $f'(x) = 15x^2 + 470x$
- (B) f'(x) = 10x 470
- (C) f'(x) = 10x + 470
- (D) $f'(x) = 15x^2 470x$
- (E) None of the above

Answer: (C) Ideally, you would solve this problem by applying the chain rule. Set $g(h) = 5h^2$ and h(x) = (x + 47), then f(x) = g(h(x)). Apply the chain rule:

$$f'(x) = g'(h)h'(x) = 10h = 10(x + 47) = 10x + 470$$

Higher Order Derivatives

Question 17: Find the second derivative of the following function:

$$f(x) = 5x^2(x+47)$$

- (A) f''(x) = 30x 470
- (B) f''(x) = 30x + 470
- (C) $f''(x) = 15x^2 + 235$
- (D) $f''(x) = 15x^2 + 470x$
- (E) None of the above

Answer: (B) The second derivative is just the derivative of the first derivative. Simplest solution would be to multiply to re-write the function as $f(x) = 5x^2(x+47) = 5x^3 + 235x^2$. Now take the derivative: $f'(x) = 15x^2 + 470x$. Taking the derivative again yields the second derivative: f''(x) = 30x + 470.

Question 18: Find the third derivative of the following function:

$$f(x) = 5x^2(x+47)$$

- (A) 15
- (B) 15 + x
- (C) 30x
- (D) 30x + 470
- (E) None of the above

Answer: (E) Just take the derivative of your answer to Question 12 to get the third derivative of $f(x) = 5x^2(x+47)$. Answer: f'''(x) = 30.

Question 19: Suppose that you have the following utility function:

$$u(x) = \sqrt{x}$$

- Find $-\frac{u''(x)}{u'(x)}$. (A) $\frac{1}{2x}$
- (B) $-\frac{1}{2x}$
- (C) 2x
- (D) -2x
- (E) None of the above

Answer: (A) The ratio $-\frac{u''(x)}{u'(x)}$ is called the Arrow-Pratt measure of relative risk aversion and you will encounter it in core microeconomics. The first derivative of the utility function (otherwise known as marginal utility) is $u'(x) = \frac{1}{2\sqrt{x}}$ (see Question 9 above). The second derivative is $u''(x) = -\frac{1}{4}x^{-\frac{3}{2}} = -\frac{1}{4\sqrt{x^3}}$. Thus the Arrow-Pratt measure of relative risk aversion is:

$$-\frac{u''(x)}{u'(x)} = -\frac{-\frac{1}{4\sqrt{x^3}}}{\frac{1}{2\sqrt{x}}} = \frac{2\sqrt{x}}{4\sqrt{x^3}} = \frac{1}{2x}$$