Week 3 Quiz: Differential Calculus: The Derivative and Rules of Differentiation

SGPE Summer School 2016

Limits

Question 1: Find $\lim _{x \rightarrow 3} f(x):$

$$
f(x)=\frac{x^{2}-9}{x-3}
$$

(A) $+\infty$
(B) -6
(C) 6
(D) Does not exist!
(E) None of the above

Answer: (C) Note the the function $f(x)=\frac{x^{2}-9}{x-3}=\frac{(x-3)(x+3)}{x-3}=x+3$ is actually a line. However it is important to note the this function is undefined at $x=3$. Why? $x=3$ requires dividing by zero (which is inadmissible). As x approaches 3 from below and from above, the value of the function $f(x)$ approaches $f(3)=6$. Thus the $\operatorname{limit} \lim _{x \rightarrow 3} f(x)=6$.
Question 2: Find $\lim _{x \rightarrow 2} f(x)$:

$$
f(x)=1776
$$

(A) $+\infty$
(B) 1770
(C) $-\infty$
(D) Does not exist!
(E) None of the above

Answer: (E) The limit of any constant function at any point, say $f(x)=C$, where C is an arbitrary constant, is simply C. Thus the correct answer is $\lim _{x \rightarrow 2} f(x)=1776$.
Question 3: Find $\lim _{x \rightarrow 4} f(x)$:

$$
f(x)=a x^{2}+b x+c
$$

(A) $+\infty$
(B) $16 \mathrm{a}+4 \mathrm{~b}+\mathrm{c}$
(C) $-\infty$
(D) Does not exist!
(E) None of the above

Answer: (B) Applying the rules of limits:

$$
\begin{aligned}
\lim _{x \rightarrow 4} a x^{2}+b x+c & =\lim _{x \rightarrow 4} a x^{2}+\lim _{x \rightarrow 4} b x+\lim _{x \rightarrow 4} c \\
& =a\left[\lim _{x \rightarrow 4} x\right]^{2}+b \lim _{x \rightarrow 4} x+c \\
& =16 a+4 b+c
\end{aligned}
$$

Question 4: Find the limits in each case:
(i) $\lim _{x \rightarrow 0} \frac{x^{2}}{|x|}$
(ii) $\lim _{x \rightarrow 3} \frac{2 x+3}{4 x-9}$
(iii) $\lim _{x \rightarrow 6} \frac{x^{2}-3 x}{x+3}$

Answer: (i) $\quad \lim _{x \rightarrow 0} \frac{x^{2}}{|x|}=\lim _{x \rightarrow 0} \frac{(|x|)^{2}}{|x|}=\lim _{x \rightarrow 0}|x|=0$
(ii) $\lim _{x \rightarrow 3} \frac{2 x+3}{4 x-9}=\frac{2 \cdot 3+3}{4 \cdot 3-9}=3$
(iii) $\lim _{x \rightarrow 6} \frac{x^{2}-3 x}{x+3}=\frac{6^{2}-3 \cdot 6}{6+3}=2$

Question 5: Show that $\lim _{x \rightarrow 0} \sin x=0$ (Hint: $-x \leq \sin x \leq x$ for all $x \geq 0$.)
Answer: Given hint and squeeze theorem we have $\lim _{x \rightarrow 0}-x=0 \leq \lim _{x \rightarrow 0} \sin x \leq 0=\lim _{x \rightarrow 0} x$ hence, $\lim _{x \text { to } 0} \sin x=0$
Question 6: Show that $\lim _{x \rightarrow 0} x \sin \left(\frac{1}{x}\right)=0$
Answer: Note first that for any real number t we have $-1 \leq \sin t \leq 1$ so $-1 \leq \sin \left(\frac{1}{x}\right) \leq 1$. Therefore, $-x \leq x \sin \left(\frac{1}{x}\right) \leq x$ and by squeeze theorem $\lim _{x \rightarrow 0} x \sin \frac{1}{x}=0$.

Continuity and Differentiability

Question 7: Which of the following functions are NOT everywhere continuous:
(A) $f(x)=\frac{x^{2}-4}{x+2}$
(B) $f(x)=(x+3)^{4}$
(C) $f(x)=1066$
(D) $f(x)=m x+b$
(E) None of the above

Answer: (A) Remember that, informally at least, a continuous function is one in which there are no breaks its curve. A continuous function can be drawn without lifting your pencil from the paper. More formally, a function $f(x)$ is continuous at the point $x=a$ if and only if:

1. $f(x)$ is defined at the point $x=a$,
2. the limit $\lim _{x \rightarrow a} f(x)$ exists,
3. $\lim _{x \rightarrow a} f(x)=f(a)$

The function $f(x)=\frac{x^{2}-4}{x+2}$ is not everywhere continuous because the function is not defined at the point $x=-2$. It is worth noting that $\lim _{x \rightarrow-2} f(x)$ does in fact exist! The existence of a limit at a point does not guarantee that the function is continuous at that point!

Question 8: Which of the following functions are continuous:
(A) $f(x)=|x|$
(B) $f(x)= \begin{cases}3 & x<4 \\ \frac{1}{2} x+3 & x \geq 4\end{cases}$
(C) $f(x)=\frac{1}{x}$
(D) $f(x)= \begin{cases}\ln x & x<0 \\ 0 & x=0\end{cases}$
(E) None of the above

Answer: (A) The absolute value function $f(x)=|x|$ is defined as:

$$
f(x)= \begin{cases}x & x \geq 0 \\ -x & x<0\end{cases}
$$

Does this function satisfy the requirements for continuity? Yes! The critical point to check is $x=0$. Note that the function is defined at $x=0$; the $\lim _{x \rightarrow 0} f(x)$ exists; and that $\lim _{x \rightarrow 0} f(x)=0=f(0)$.

Question 9: Which of the following functions are NOT differentiable:
(A) $f(x)=|x|$
(B) $f(x)=(x+3)^{4}$
(C) $f(x)=1066$
(D) $f(x)=m x+b$
(E) None of the above

Answer: (A) Remember that continuity is a necessary condition for differentiability (i.e., every differentiable function is continuous), but continuity is not a sufficient condition to ensure differentiability (i.e., not every continuous function is differentiable). Case in point is $f(x)=|x|$. This function is in fact continuous (see previous question). It is not however differentiable at the point $x=0$. Why? The point $x=0$ is a cusp (or kink). There are an infinite number of lines that could be tangent to the function $f(x)=|x|$ at the point $x=0$, and thus the derivative of $f(x)$ would have an infinite number of possible values.

Question 10: Is function

$$
f(x)= \begin{cases}0 & : x=0 \\ x \sin (1 / x) & : x \neq 0\end{cases}
$$

continuous at point 0 ?
Answer: Note that f is continuous at a point a if

$$
\lim _{x \rightarrow a} f(x)=f\left(\lim _{x \rightarrow a} x\right) .
$$

In this case, we take $a=0$ and

$$
\lim _{x \rightarrow 0} f(x)=\lim _{x \rightarrow 0} x \sin (1 / x)=0
$$

by question 6 . Moreover,

$$
f\left(\lim _{x \rightarrow 0} x\right)=f(0)=0
$$

thus, f is continuous at 0 .

Derivatives

Question 11: Find the derivative of the following function:

$$
f(x)=1963
$$

(A) $+\infty$
(B) 1963
(C) $-\infty$
(D) 0
(E) None of the above

Answer: (D) The derivative of a constant function is always zero.
Question 12: Find the derivative of the following function:

$$
f(x)=x^{2}+6 x+9
$$

(A) $f^{\prime}(x)=2 x+6+9$
(B) $f^{\prime}(x)=x^{2}+6$
(C) $f^{\prime}(x)=2 x+6$
(D) $f^{\prime}(x)=2 x$
(E) None of the above

Answer: (C) Remember that 1) the derivative of a sum of functions is simply the sum of the derivatives of each of the functions, and 2) the power rule for derivatives says that if $f(x)=k x^{n}$, then $f^{\prime}(x)=$ $n k x^{n-1}$. Thus $f^{\prime}(x)=2 x^{2-1}+6 x^{1-1}+0=2 x+6$.

Question 13: Find the derivative of the following function:

$$
f(x)=x^{\frac{1}{2}}
$$

(A) $f^{\prime}(x)=-\frac{1}{2 \sqrt{x}}$
(B) $f^{\prime}(x)=\frac{1}{\sqrt{x}}$
(C) $f^{\prime}(x)=\frac{1}{2 \sqrt{x}}$
(D) $f^{\prime}(x)=\sqrt{x}$
(E) None of the above

Answer: (C) Remember that the power rule for derivatives works with fractional exponents as well! Thus $f^{\prime}(x)=\frac{1}{2} x^{\frac{1}{2}-1}=\frac{1}{2} x^{-\frac{1}{2}}=\frac{1}{2 \sqrt{x}}$.
Question 14: Find the derivative of the following function:

$$
f(x)=5 x^{2}(x+47)
$$

(A) $f^{\prime}(x)=15 x^{2}+470 x$
(B) $f^{\prime}(x)=5 x^{2}+470 x$
(C) $f^{\prime}(x)=10 x$
(D) $f^{\prime}(x)=15 x^{2}-470 x$
(E) None of the above

Answer: (A) Ideally, you would solve this problem by applying the product rule. Set $g(x)=5 x^{2}$ and $h(x)=(x+47)$, then $f(x)=g(x) h(x)$. Apply the product rule:

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(x) h(x)+g(x) h^{\prime}(x) \\
& =10 x(x+47)+5 x^{2}(1) \\
& =10 x^{2}+470 x+5 x^{2} \\
& =15 x^{2}+470 x
\end{aligned}
$$

Question 15: Find the derivative of the following function:

$$
f(x)=\frac{5 x^{2}}{x+47}
$$

(A) $f^{\prime}(x)=\frac{5 x^{2}-470 x}{(x+47)^{2}}$
(B) $f^{\prime}(x)=\frac{10 x^{2}+470 x}{(x+47)}$
(C) $f^{\prime}(x)=10 x$
(D) $f^{\prime}(x)=\frac{5 x^{2}+470}{(x+47)^{2}}$
(E) None of the above

Answer: (A) Ideally, you would solve this problem by applying the quotient rule. Set $g(x)=5 x^{2}$ and $h(x)=(x+47)$, then $f(x)=\frac{g(x)}{h(x)}$. Apply the quotient rule:

$$
\begin{aligned}
f^{\prime}(x) & =\frac{g^{\prime}(x) h(x)-g(x) h^{\prime}(x)}{h(x)^{2}} \\
& =\frac{10 x(x+47)-5 x^{2}(1)}{(x+47)^{2}} \\
& =\frac{10 x^{2}+470 x-5 x^{2}}{(x+47)^{2}} \\
& =\frac{5 x^{2}+470 x}{(x+47)^{2}}
\end{aligned}
$$

Question 16: Find the derivative of the following function:

$$
f(x)=5(x+47)^{2}
$$

(A) $f^{\prime}(x)=15 x^{2}+470 x$
(B) $f^{\prime}(x)=10 x-470$
(C) $f^{\prime}(x)=10 x+470$
(D) $f^{\prime}(x)=15 x^{2}-470 x$
(E) None of the above

Answer: (C) Ideally, you would solve this problem by applying the chain rule. Set $g(h)=5 h^{2}$ and $h(x)=(x+47)$, then $f(x)=g(h(x))$. Apply the chain rule:

$$
\begin{aligned}
f^{\prime}(x) & =g^{\prime}(h) h^{\prime}(x) \\
& =10 h \\
& =10(x+47) \\
& =10 x+470
\end{aligned}
$$

Higher Order Derivatives

Question 17: Find the second derivative of the following function:

$$
f(x)=5 x^{2}(x+47)
$$

(A) $f^{\prime \prime}(x)=30 x-470$
(B) $f^{\prime \prime}(x)=30 x+470$
(C) $f^{\prime \prime}(x)=15 x^{2}+235$
(D) $f^{\prime \prime}(x)=15 x^{2}+470 x$
(E) None of the above

Answer: (B) The second derivative is just the derivative of the first derivative. Simplest solution would be to multiply to re-write the function as $f(x)=5 x^{2}(x+47)=5 x^{3}+235 x^{2}$. Now take the derivative: $f^{\prime}(x)=15 x^{2}+470 x$. Taking the derivative again yields the second derivative: $f^{\prime \prime}(x)=30 x+470$.

Question 18: Find the third derivative of the following function:

$$
f(x)=5 x^{2}(x+47)
$$

(A) 15
(B) $15+x$
(C) $30 x$
(D) $30 x+470$
(E) None of the above

Answer: (E) Just take the derivative of your answer to Question 12 to get the third derivative of $f(x)=5 x^{2}(x+47)$. Answer: $f^{\prime \prime \prime}(x)=30$.

Question 19: Suppose that you have the following utility function:

$$
u(x)=\sqrt{x}
$$

Find $-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}$.
(A) $\frac{1}{2 x}$
(B) $-\frac{1}{2 x}$
(C) $2 x$
(D) $-2 x$
(E) None of the above

Answer: (A) The ratio $-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}$ is called the Arrow-Pratt measure of relative risk aversion and you will encounter it in core microeconomics. The first derivative of the utility function (otherwise known as marginal utility) is $u^{\prime}(x)=\frac{1}{2 \sqrt{x}}$ (see Question 9 above). The second derivative is $u^{\prime \prime}(x)=-\frac{1}{4} x^{-\frac{3}{2}}=$ $-\frac{1}{4 \sqrt{x^{3}}}$. Thus the Arrow-Pratt measure of relative risk aversion is:

$$
-\frac{u^{\prime \prime}(x)}{u^{\prime}(x)}=-\frac{-\frac{1}{4 \sqrt{x^{3}}}}{\frac{1}{2 \sqrt{x}}}=\frac{2 \sqrt{x}}{4 \sqrt{x^{3}}}=\frac{1}{2 x}
$$

