“Edinburgh isn’t so much a city, more a way of life … I doubt I’ll ever tire of exploring Edinburgh, on foot or in print.”

Ian Rankin
Best-selling author and alumnus
Influencing the world since 1583

For more than 400 years the University of Edinburgh has been changing the world. Our staff and students have explored space, won Nobel Prizes and revolutionised surgery. They’ve published era-defining books, run the country, made life-saving breakthroughs and laid the foundations to solve the mysteries of the universe.

Our distinguished alumni include NASA astronaut Piers Sellers, former MI5 Director-General Dame Stella Rimington, Olympians Sir Chris Hoy and Katherine Grainger and historical greats such as philosopher David Hume, suffragist Chrystall Macmillan, who founded the Women’s International League for Peace and Freedom, and physicist and mathematician James Clerk Maxwell.

International collaboration
An internationally renowned centre for academic excellence, we forge world-class collaborations with partners such as the California Institute of Technology (Caltech), Stanford University, the University of Melbourne, Peking University, the University of Delhi and the University of KwaZulu-Natal. As a member of the League of European Research Universities and the Coimbra Group, we link up with leading institutions across Europe.

Linking research and commerce
We were one of the first UK universities to develop commercial links with industry, government and the professions. Edinburgh Innovations promotes and commercialises our research excellence and can assist you in taking the first step to market, through collaborative research, licensing technology or consultancy.

Enhancing your career
We are committed to embedding employability in your University experience and have one of the Russell Group’s best track records for graduate employment. From volunteering schemes to our sector-leading careers service, we provide you with opportunities to develop your skills, knowledge and experience, giving you an edge in the competitive job market.

TOP 50
We’re consistently ranked one of the top 50 universities in the world. We’re 23rd in the 2018 QS World University Rankings.

4TH
We’re ranked fourth in the UK for research power, based on research quality and breadth.*

83%
The majority of our research – 83 per cent – is considered world leading or internationally excellent.*

32ND
We’re ranked 32nd in the world for the employability of our graduates.†

£268m
In 2015/16 we won £268 million in competitive research grants.

21
We’re associated with 21 Nobel Prize winners, including physicists Peter Higgs, Charles Barkla and Max Born, medical researcher Peter Doherty and biologist Sir Paul Nurse.

13TH
We’re ranked 13th in the world’s most international universities.‡ Students from two-thirds of the world’s countries study here.

* Research Excellence Framework (REF) 2014
† Latest Emerging Global Employability University Ranking
‡ Times Higher Education: The World’s Most International Universities 2017
The School of Physics & Astronomy offers taught master of science (MSc) programmes in particle and nuclear physics, mathematical physics, and theoretical physics.

www.ed.ac.uk/pg/817 (Mathematical Physics)
www.ed.ac.uk/pg/818 (Theoretical Physics)

Mathematical Physics/Theoretical Physics

MSc 1 yr FT

Programme description
These programmes, run by the Higgs Centre for Theoretical Physics, are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts.

The programmes are a core part of the Higgs Centre for Theoretical Physics, which has been created to mark the start of a new era in theoretical physics research, following the discovery of the Higgs boson at CERN. You will take part in the Centre's activities, including weekly seminars, colloquia and workshops involving physicists from around the world, and you will be involved in research-level projects as part of your dissertation.

The partnership between mathematics and physics is an essential one. In theoretical physics we attempt to build abstract constructs that rationalise, explain and predict physical phenomena. To do this we need mathematics: the language of physics. The underlying structure of the physical world can be understood in great detail using mathematics; this is an ever-ending source of fascination to theoretical physicists.

Programme structure
You will take two compulsory courses plus a selection of courses that will bring you to an advanced level in subjects such as general relativity, cosmology, statistical physics, condensed matter physics, quantum field theory and the standard model of particle physics. You may also take courses drawn from a wider pool including specialist courses in mathematics, computing and climate science. For Mathematical Physics, mathematics courses can account for up to half of the taught course element.

Following the taught component of the programme, you will undertake a three-month research project leading to a dissertation.

Career opportunities
These programmes are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable to a wide range of research areas and sectors including academia, industry, education and finance.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), in physics or mathematics with sufficient theoretical physics content.

English language requirements
See page 16.

Fees and funding
For fees see page 16 and for funding information see page 18.

Contact
MSc Administrator
Tel +44 (0)131 651 7065
Email msc.pnp@ph.ed.ac.uk
More information: www.ph.ed.ac.uk/mscpnp

Particle & Nuclear Physics

MSc 1 yr FT

Programme description
Particle and nuclear physics are two of the most important research areas in modern physics. Their study brings together advanced experimental and computational techniques, and theoretical understanding. The experiments are typically large collaborations working at international laboratories using highly sophisticated detectors. These detector technologies also find applications in medical physics and other forms of position sensing. The computational aspects deal with large data sets and use machine learning and other advanced techniques in data science. Theoretical nuclear and particle physics aims to interpret the experimental results in terms of mathematical models of the structure and evolution of the physical world.

This programme is run by the Institute for Particle and Nuclear Physics: www.ph.ed.ac.uk/research/institute-for-particle-and-nuclear-physics.

You will take part in the Institute's activities, including regular seminars, colloquia and workshops involving physicists from around the world. You will also be involved in a research-level project as part of your dissertation.

The Institute is a member of the ATLAS, LHCb, CLICdp and FCC collaborations at CERN, the L2 dark matter at the Sanford Underground Research Facility in South Dakota, and the GNO and Hyper-K neutrino experiments at Fermilab (USA) and in J-PARC (Japan). In addition, we perform experiments at other leading international accelerator facilities at CERN, LUNA (Italy), RIKEN (Japan), NSCL-MSU & Thomas Jefferson National Laboratory (USA) and MAMI-C & PANDA (Germany).

Programme structure
You will take two compulsory courses in Data Analysis and Research Skills and will choose some, or all, of the courses offered in Nuclear Physics; Particle Physics; Detectors and Medical Physics Applications. You will also have a wide choice of courses in theoretical physics (such as general relativity, cosmology, statistical physics, quantum field theory, and the Standard Model of particle physics), high performance computing, and in other areas of physics such as astronomy and condensed matter physics.

Following the taught component, you will undertake a three-month research project leading to a dissertation. You will be based on one of the Institute's projects, as part of an international collaboration, and may have the opportunity to visit a leading research laboratory. We have strong links with industry and also offer you the opportunity to undertake your dissertation project with a local company.

Career opportunities
This programme will expose you to frontier activities in experimental nuclear and particle physics and develops your general transferable skills related to data analysis, research and communication. This provides a platform for employment in research, science-based industry, medical physics, education and a wide spectrum of professions that call for numeracy and data analysis skills.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), in physics or a related subject with sufficient physics content. Prior knowledge of particle and nuclear physics is preferable but not essential.

English language requirements
See page 16.

Fees and funding
For fees see page 16 and for funding information see page 18.

Contact
MSc Administrator
Tel +44 (0)131 651 7065
Email msc.pnp@ph.ed.ac.uk
More information: www.ph.ed.ac.uk/mscpnp
Research opportunities and support

We offer a diverse range of doctor of philosophy (PhD) programmes across all of our areas of research. You will be supported by courses designed for PhD students, in addition to those offered by the Scottish Universities Physics Alliance (SUPA) Graduate School and the Institute for Academic Development (see page 15).

A Graduate School Forum provides an interface between students and the Graduate School where issues concerning students can be discussed and resolved.

All PhD students are automatically members of the Physics Intergroup Postgraduate Committee (PICP), which combines seminars and workshops to be specific and general subject areas. PICP organises an annual residential trip to the Firth of Forth Point Centre, on the shores of Loch Tay in the Scottish Highlands. With everything from cycling to canoeing on offer, this is the perfect opportunity to blow away the cobwebs and get to know your fellow research students.

For further information on the PhD programme, see: www.ph.ed.ac.uk/studying/postgraduate-research/ research-opportunities

You can ‘meet’ current students and find out what they think about their programmes at: http://youtu.be/frQx7nsyEVs

Entry requirements

You should have a UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry) in a related discipline. Please check the specific entry requirements for your programme online before applying.

Career opportunities

Recent graduates have gone on to postdoctoral research posts at universities internationally or are now working for employers such as BAE, EY, HMRC and Moody’s Analytics.

See also...

You may be interested in postgraduate opportunities within the University, in particular programmes offered by the schools of Biological Sciences, Chemistry, Informatics or Mathematics, or the CPO programmes offered by the Moray House School of Education.

The University of Edinburgh

Physics & Astronomy Postgraduate Opportunities 2018

www.ph.ed.ac.uk

Key FT: Full time. PT: Part time.

Case study: Edinburgh’s research with impact

Formulation Physics

From the moment we awake each morning, we interact with complex fluids throughout the day – whenever we wash, eat, read on liquid crystal displays (LCD) or touch a variety of coatings from topical creams to decorative paints. Other complex fluids may be less obvious to us, such as the dispersions used in pesticides and pastes used to make catalytic exhausts, yet they are still vital to the quality of our lives. Given such ubiquity, what are complex fluids?

Complex fluids

Unlike simple liquids, made of molecules with equal freedom to move, complex fluids often contain nano- to micro-sized components in the form of dispersed polymers, particles, droplets or bubbles. Such materials can be highly concentrated dispersions such as toothpastes, polymeric and particulate composites such as the dough that forms bread or emulsions such as decorative paints. To the general consumer these kinds of products are considered ‘posh’ and have properties somewhere in between the classic models of liquids, which flow easily, and solids, which do not flow at all.

The Edinburgh Complex Fluids Partnership (ECFP) was set up in 2012 as a knowledge exchange unit to develop collaborations between industry and the Soft Matter and Biological Physics Group within the School of Physics and Astronomy.

Collaboration

During the first five years ECFP collaborated with more than 30 companies, of all scales from start-ups to multinationals, working across numerous sectors including personal care, decorative paints, food and drink, agrochemicals and ceramics. The breadth of work illustrates the importance of developing generic physical principles through research, the results of which are relevant to a number of different systems with similar microstructure.

Through working with industry, ECFP has been able to help companies improve their formulations and processes and in doing so reduce wastage. Furthermore, exciting new research themes have arisen, inspired by fundamental challenges faced by industry.

www.edinburghcomplexfluids.com

Working with industry ECFP has been able to help companies improve their formulations and processes.

See more online: www.ed.ac.uk/research/impact

“Research opportunities are excellent, and I have really enjoyed becoming part of the scientific community at the School.”

Rebecca Bowler, PhD Astronomy

The University of Edinburgh

Physics & Astronomy Postgraduate Opportunities 2018

www.ed.ac.uk/pg/189

Condensed Matter & Complex Systems

PhD 3 yrs FT

The Institute for Condensed Matter and Complex Systems encompasses a myriad of scientific worlds from quantum ordering to astrobiology. Our interests overlap with computational materials science and biological and earth sciences. We lead new developments in statistical physics, novel simulation methodologies and cutting-edge experiments. The challenge is to understand out-of-equilibrium behaviour for which no general theory exists and for which experiments consistently reveal unexpected phenomena.

Research environment

There are two closely linked broad research groups:

- SOFT MATTER, STATISTICAL AND BIOLOGICAL PHYSICS

 Soft matter research concerns liquids, solids, and viscoelastic materials (such as polymers and suspensions). We harness their properties to create novel materials in the laboratory and seek to understand the microscopic origins of their properties. Statistical physics describes the behaviour of large numbers of microscopic constituents and provides the theory of condensed matter and complex systems. Our challenge is to understand systems out of equilibrium through the analytical and numerical study of simple model systems as well as real world applications such as bacterial evolution. Our research in biological physics and in active matter spans aqueous solutions of small bioactive molecules via robots and DNA to simple cells, cell interactions, and collections of organisms in ecosystems. We use state-of-the-art optical techniques and have dedicated wet labs.

- QUANTUM ORDERING AND PHYSICS AT EXTREME CONDITIONS

 Quantum ordering is manifested in the collective quantum states of electrons. We examine how and why particular states form and investigate their novel properties, including unusual forms of superconductivity. We investigate new materials in which completely unexpected types of quantum ordering may occur. In future this could allow materials with these novel properties to be engineered. Extreme conditions provide studies of matter under very high pressures and temperatures. By changing the density, the properties of matter can be dramatically altered. We aim to understand these phenomena and characterise new behaviours. We use light spectroscopy, x-ray and neutron diffraction at facilities worldwide, including the European Synchrotron Radiation Facility; the Spallation Neutron Source, Tennessee; and Eddie, the University’s 2500+ core multipurpose supercomputer, and Eddie, the University’s 2500+ core multipurpose machine. Our condensed matter theorists are full participants in the Higgs Centre for Theoretical Physics.

Careers success

Our graduates have pursued highly diverse and successful careers in academia and industry. Recent graduates have secured positions at the Diamond Light Source in the UK, and further afield at the Australian Synchrotron; Faraday future research fellow; and a postdoc in China.
Nuclear Physics

PhD 3 yrs FT

We have established an enviable reputation for producing impactful work and sought after graduates. Our group boasts a great breadth of expertise, which creates a research environment that allows for diversity, collaboration and a high level of understanding of the field as a whole. We encourage small collaborations that allow you to become involved in all aspects of your experiments, including design, construction, implementation, data analysis and presentation of the results.

Research environment

We have a broad range of interests in three research areas. In nuclear astrophysics, we aim to understand the processes and nuclear reactions that create the chemical elements. This requires performing experiments underground to study reactions at the very low energies occurring in stars such as the sun, and with beams of radioactive nuclei to study reactions involved in explosive events such as supernovae, which occur at higher temperatures and involve unstable isotopes. In nuclear and hadron physics with electromagnetic probes we seek a deeper understanding of nuclear matter. This includes the hunt for exotic quark states predicted by quantum chromodynamics, studying neutron skins, and strange hyperons, which give insights into the mysterious nature of neutron stars. Recently, the group established the research area medical imaging and therapy, developing a new concept in medical PET imaging with the potential to significantly reduce the contribution of random noise and in-patient scattering.

Creating networks

Most of our projects are undertaken in international collaborations. Should your research warrant it, you will have the opportunity to develop your work at one of a number of high profile research facilities and worldwide institutions, such as TRIUMF in Canada, Thomas Jefferson National Laboratory, Argonne National Laboratory in the US, CERN in Switzerland, Mainz University in Germany, and LUNA in Italy. These partnerships will not only help you develop your research to an international standard, but will also give you the chance to establish valuable contacts in the world of nuclear physics.

An asset for any career

Research degrees in nuclear physics from the University of Edinburgh have taken many of our graduates into appointments at international universities and labs. Many of our graduates now hold permanent academic positions in and outside the UK. Outside academia, our graduates work at high tech companies, in the finance sector and at national laboratories. The quality of the programme is very well recognised, and a significant asset to any academic or commercial employer.

English language requirements

See page 16.

Fees and funding

For fees see page 16 and for funding information see page 18.

“The attraction of the MSc was the diversity of the courses available. I could tailor my programme and select courses that were mathematical, theoretical or experimental. Also, the staff were extremely approachable and caring.”

Vasiliy Demchenko, MSc Theoretical Physics graduate
Particle Physics

Expanding nature at the tiniest scale, the particle physics group seeks to add to our understanding of the make-up of our universe. By joining our research group, you’ll be following in the footsteps of our celebrated Emeritus Professor, Peter Higgs, whose groundbreaking Higgs mechanism has excited the world of physics for decades and has been the focus of operations at the Large Hadron Collider at CERN. You’ll also have the opportunity to confer and work with some of the greatest minds in physics today, through our visitor programme, conferences and international facilities.

Research environment
Our research group works in two areas – Experiment and Theory.

PARTICLE PHYSICS – EXPERIMENT
We look to understand the fundamental particles of nature and the interactions that govern their behaviour. In particular, from understanding the symmetries present in the universe, we seek to explain the dominance of matter over anti-matter, and mechanisms of symmetry-breaking that lead to the creation of mass via the Higgs boson and non-Standard Model particles. Researchers from our group are working on two experiments at the Large Hadron Collider; the LHCb experiment and the ATLAS experiment.

PARTICLE PHYSICS – THEORY
Our research concerns fundamental physics at all energy scales, from hadronic binding energy to the massive forces at play in the first instants of the universe’s existence. We collaborate with leading facilities, such as the Large Hadron Collider at CERN and the WMAP and Planck satellites. We are working on topics in both perturbative and non-perturbative field theory, with applications in predictions for the LHC, flavour physics, the structure of gauge theories, physics beyond the standard model, cosmology and turbulence. We have also developed a collaboration with Intel, hosting a prestigious Intel Parallel Computing Centre for the development of QCD simulation code for next generation systems.

A universe of opportunities
The particle physics group offers prospective PhD students exciting opportunities to study at the very frontier of understanding. Fully funded studentships are available for a wide range of theoretical and experimental projects, plus opportunities to travel to CERN for long and short visits.

English language requirements
See page 16.

Fees and funding
For fees see page 16 and for funding information see page 18.

“Aside from the opportunities to travel around the world, being part of the Institute of Condensed Matter & Complex Systems research group exposed me to a broad range of scientific fields and approaches to research.”

Justin Whitehouse, PhD Condensed Matter Physics
As the birthplace of the Higgs mechanism and the prediction of the Higgs boson, the University of Edinburgh's School of Physics & Astronomy has a strong track record of innovation and research excellence.

Our research – which was ranked fourth in the UK in the Research Excellence Framework (REF) 2014 with 96 per cent rated world leading or internationally excellent – pushes the frontiers of scientific thinking.

From the smallest to largest scales, the School's pioneering work regularly attracts global attention. Not only have we played a vital role in the world's largest scientific experiment – to find the Higgs boson – but we have also carried out the biggest exercise yet to map dark matter, spanning billions of light years across the universe.

New discoveries, and more to come

The discovery of the Higgs boson at CERN promptly the creation of a new centre at the School – where Peter Higgs remains an Eminent Professor – to support research in theoretical physics. The Higgs Centre for Theoretical Physics brings together scientists from around the world to seek deeper understanding of the workings of the universe and its contents, through its extensive visitor and workshop programmes.

Our research works in three institutes:

- **The Institute for Astronomy**
 The Institute for Astronomy is one of the UK's major centres of astronomical research, with particular strengths in survey astronomy, cosmology, active galaxies and the formation of stars and planets.

- **The Institute for Condensed Matter and Complex Systems**
 At the Institute for Condensed Matter and Complex Systems, we explore everything from the motion of microorganisms to the behaviour of matter under the extreme pressures found at the centres of stars.

- **The Institute for Particle and Nuclear Physics**
 The work of the Institute for Particle and Nuclear Physics includes the giant experiments of the Large Hadron Collider at CERN, Switzerland, which are revealing the secrets of the building blocks of the universe.

* As part of PHYESTA, a joint submission with the University of St Andrews.

Our researchers work three institutes: The Institute for Astronomy, The Institute for Condensed Matter and Complex Systems, and The Institute for Particle and Nuclear Physics. Each institute has its own unique focus on different areas of research.

Facilities and resources

Our School, home to around 100 academics devoted to research and teaching, offers the breadth of expertise and world-class facilities that will inspire you to produce groundbreaking work.

You'll be encouraged to explore the best the world can offer in your field of interest. Our connections with organisations such as CERN can widen your horizons, as can visits to international conferences and events. Thanks to our reputation as a centre for research excellence, we regularly play host to specialist conferences, and you can expect to have access to some of the most respected names in the field.

World leading facilities

World leading research requires exceptional facilities to help fulfill your academic ambitions. While we have established strong connections with many prestigious global research centres, a number of internationally recognised facilities are based here at Edinburgh. They include:

- **The Higgs Centre for Theoretical Physics**
 The discovery in July 2012 of the Higgs boson at CERN, almost half a century after Peter Higgs' prediction in 1964, is a milestone in the history of theoretical physics. Rarely has a theoretical prediction been confirmed so spectacularly, so long after it was made. The theoretical ideas put forward by Peter Higgs, Francois Englert, and Robert Brout, inspiring thousands of physicists and opening up the field of the Higgs boson, were celebrated with the Nobel Prize in Physics awarded in October 2013.

 The discovery marks the start of a new era in theoretical physics. While the Standard Model of elementary particle physics is now complete, many fundamental questions remain unanswered. We still don't understand the intricate structure of charges and flavours in the Standard Model, or what determines the values of its parameters. We are still struggling to build a compelling theory of quantum gravity, and understand the role played by the vacuum in the formation of the early universe. We have no idea what dark matter and dark energy are, and we have difficulty understanding structure formation and complexity.

- **The Higgs Centre for Theoretical Physics**
 The Higgs Centre for Theoretical Physics has been established by the University to seek answers to some of these questions, by creating opportunities to formulate new theoretical concepts to take us beyond the limitations of current paradigms.

- **UK Centre for Astrobiology**
 We are affiliated with the NASA Astrobiology Institute and have a mission to advance our understanding of molecules and life in extreme environments on Earth and beyond. We do this with a combination of theoretical, laboratory, field and mission approaches. We apply this knowledge to improving the quality of life on Earth and developing space exploration as two mutually enhancing objectives. Our work is underpinned by broad and compelling questions: How did life originate? Is there life elsewhere in the Universe? What are the limits of the Earth’s biosphere? Can we establish a permanent human presence beyond the Earth? We study the responses of molecules to extreme environments, including the space environment, simulate extra-terrestrial environments, and maintain a 1.5km-deep subsurface biology laboratory at the Boulby Mine in Yorkshire, England.

- **The Centre for Science at Extreme Conditions (CSEC)**
 At this highly specialised laboratory, the physical properties of materials can be measured at extremely high pressures. CSEC, which has risen to international prominence over the past 20 years, provides the infrastructure needed to explore the effects of pressure on structure at interatomic distances.

The University of Edinburgh
Physics & Astronomy Postgraduate Opportunities 2018

The University of Edinburgh
Physics & Astronomy Postgraduate Opportunities 2018
Community

As you would expect from one of the largest physics research centres in the UK, our academic community spans a broad range of subject areas.

Our staff includes a number of Fellows of both the Royal Society and the Royal Society of Edinburgh, and you’ll have access to experts from other institutions through our membership of the Scottish Universities Physics Alliance (SUPA).

This means you’ll be undertaking your research in an environment that encourages discovery through collaboration. You’ll be part of a vibrant and motivated group of researchers, and will be able to participate in events aimed at developing strong collaborative links.

Social networking

You’ll have plenty of opportunities to leave your office or lab to enjoy the company of your peers from across the University. Edinburgh University Students’ Association has a host of societies, sporting activities and social events waiting for you. It is one of the oldest students’ associations in the UK and is an excellent way of getting to know other students.

SUPA connections

Our membership of SUPA helps ensure exposure to as broad a range of thinking as possible. SUPA features courses, guest lectures and online events aimed at bringing together the expertise of Scotland’s physicists and astronomers. You’ll have the opportunity to connect with your peers from other Scottish universities and establish your place within the wider scientific community.

Employability and graduate attributes

As well as the specific skills you will gain throughout your studies, you will also develop techniques and abilities that will give you a head start in any career. We offer outstanding services to enhance your employability and make the most of your time here.

Institute for Academic Development

All postgraduate students can benefit from our Institute for Academic Development (IAD), which provides information, events and courses to develop the skills you will need throughout your studies and in the future. IAD events also offer the perfect opportunity to meet and network with other postgraduates from across the University.

Further information is available online: www.ed.ac.uk/iad/postgraduates

For taught postgraduates, IAD provides a popular study-related and transferable skills support programme. It is designed to help you settle into postgraduate life, succeed during your studies and move confidently to the next stage of your career. We offer on-campus and online workshops and one-to-one study skills consultations, plus online advice and learning materials. Workshops and learning resources cover key topics tailored to different academic stages, including getting started with your studies; critical reading, writing and thinking; managing your exams; and planning for and writing up your dissertation.

IAD also provides a comprehensive programme of transferable skills training, resources and support for researchers completing a doctorate. The workshop programme is designed to help you successfully prepare for the various milestones of your PhD, from getting started with your research, to writing up and preparing for the viva. Workshops cover topics such as writing skills, reference management tools, statistics, preparing for conferences, delivering presentations, time and project management, and personal development. IAD also offers online resources and planning tools to help get your research started, plus support for tutoring and demonstrating, and research public engagement and communication.

Careers Service

Our Careers Service plays an essential part in your wider student experience at the University, offering a range of tailored careers and personal development guidance and support. We support you to recognise the wealth of possibilities ahead, while at university and after graduation, helping you explore new avenues, tap into your talents and build your employability with confidence and enthusiasm.

We provide specialist support for postgraduate students. From exploring career options to making decisions, from CV writing to interview practice, from Employ. ed internships to graduate posts and from careers fairs to postgraduate alumni events, we help you prepare for the future.

We sustain and continually develop links with employers from all industries and employment sectors, from the world’s top recruiters to small enterprises based here in Edinburgh. Our employer team provides a programme of opportunities for you to meet employers on campus and virtually, and advertises a wide range of part-time and graduate jobs.

Further information is available online: www.ed.ac.uk/careers/postgraduates

Connect.ed

Edinburgh encourages its alumni to stay in touch with current students who share an academic background or are interested in a similar career path. Connect.ed is a networking system run by the Careers Service that provides an informal and confidential opportunity for alumni to share their occupational knowledge and experience with current students, who can contact them for advice and guidance on their future career.

More information: www.ed.ac.uk/careers/connected

Backing bright ideas

LAUNCH.ed is the University’s award winning programme for student entrepreneurs. Each year, LAUNCH.ed works with hundreds of students to assess their ideas and develop their business skills and helps many start their businesses. We have helped Edinburgh students and alumni launch almost 100 new businesses in the last three years, ranging from language tuition to robotics companies.

More information: www.LAUNCH.ed.ac.uk

Equality recognition

The School has been awarded Athena SWAN Silver status and Juno Champion status in recognition of our ongoing commitment to advancing women’s careers in education and research.

More information: www.ecu.ac.uk/athena-swan www.iop.org/juno

connect.ed Edinburgh encourages its alumni to stay in touch with current students who share an academic background or are interested in a similar career path. Connect.ed is a networking system run by the Careers Service that provides an informal and confidential opportunity for alumni to share their occupational knowledge and experience with current students, who can contact them for advice and guidance on their future career.

More information: www.ed.ac.uk/careers/connected

Backing bright ideas

LAUNCH.ed is the University’s award winning programme for student entrepreneurs. Each year, LAUNCH.ed works with hundreds of students to assess their ideas and develop their business skills and helps many start their businesses. We have helped Edinburgh students and alumni launch almost 100 new businesses in the last three years, ranging from language tuition to robotics companies.

More information: www.LAUNCH.ed.ac.uk

Equality recognition

The School has been awarded Athena SWAN Silver status and Juno Champion status in recognition of our ongoing commitment to advancing women’s careers in education and research.

More information: www.ecu.ac.uk/athena-swan www.iop.org/juno
Applications and fees

We have an online application process for all postgraduate programmes. It's a straightforward system with full instructions, including details of any supporting documentation you need to submit.

When applying, you will set up an account, which lets you save your application and continue at another time. Full guidance on our application system is available at: www.ed.ac.uk/postgraduate/applying

General requirements

Our usual entrance requirement for postgraduate study is a UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international-graduate-entry), in a relevant field, such as physics, astronomy, computer science, mathematics or engineering.

If your background is not directly related to physics or astronomy, you may still be considered. Please contact the programme administrator to discuss your suitability.

You will also need to meet the University’s language requirements (see right).

Entry requirements for individual programmes can vary, so check the details for the specific programme you wish to apply for.

References

Two references are required for applications to our postgraduate taught and postgraduate research programmes. You should check the entry online for exact requirements for your intended programme of study. For general guidance on references, visit: www.ed.ac.uk/postgraduate/references

Deadlines

Taught programmes

Some programmes have application deadlines. Please check the programme entry online for details. For all other programmes, you are encouraged to apply no later than one month prior to entry to ensure there is sufficient time to process your application. However, earlier application is recommended, particularly where there is a high demand for places or when a visa will be required. Should you wish to submit a late application, please contact us for guidance. Most scholarships (including the Higgs Centre MSc Prize Scholarships) have application deadlines in early May, and in most cases you need to apply for your University place before you can be considered.

Research programmes

You may apply for admission to PhD studies at any time but we encourage you to make your application by the end of January. This is so that you can be notified of scholarship application deadlines if you need to apply for these to support your studies.

English language requirements

Students whose first language is not English must show evidence of one of the qualifications below:

- IELTS Academic: total 6.5 (at least 6.0 in each module).
- TOEFL-iBT: total 92 (at least 20 in each module).
- PTE(A): total 61 (at least 56 in each of the Communicative Skills sections).
- CAE and CPE: total 176 (at least 169 in each module).
- Trinity ISE: ISE II (with distinctions in all four components).

Please note:

- English language requirements can be affected by government policy so please ensure you visit our degree finder to check the latest requirements for your programme. Visit: www.ed.ac.uk/postgraduate/degrees
- Your English language certificate must be no more than two years old at the beginning of your programme.
- We also accept recent degree-level study that was taught and assessed in English in a majority English-speaking country (as defined by UK Visas & Immigration).

Abbreviations: IELTS – International English Language Testing System; TOEFL-iBT – Test of English as a Foreign Language Internet-based Test; PTE(A) – Pearson Test of English (Academic); CAE – Certificate of Proficiency in English; CPE – Certificate in Advanced English; Trinity ISE – Integrated Skills in English.

www.ed.ac.uk/english-requirements/pg

Tuition fees

The following table provides an overview of indicative fee levels for programmes commencing in 2018.

Figures marked * show the fee level set for the 2017/18 academic year. All other figures are indicative of expected fee levels for your studies during the 2018/19 academic year. Because these figures are indicative, it is important you check online before you apply and check the up-to-date fee level that will apply to your specific programme: www.ed.ac.uk/student-funding/tuition-fees/postgraduate

Please note:

- International students starting full-time taught programmes of study lasting more than one year will be charged a fixed annual fee.
- All other students on full-time and part-time programmes of study lasting more than one year should be aware that annual tuition fees are subject to revision and are typically increased by approximately five per cent per annum. This annual increase should be taken into account when you are applying for a programme.
- In addition to tuition fees, your programme may be subject to an application fee and additional costs/programme costs may apply. Please check the latest programme information online.

Tuition fees for EU students

EU students enrolling in the 2018/19 academic year will be admitted as Scottish/ EU fee status students. Taught masters students will be eligible for the same tuition support as Scottish domiciled students from the Student Awards Agency for Scotland (SAAS).

For UK/EU students

Annual fee

<table>
<thead>
<tr>
<th>Programme</th>
<th>Full-time FT</th>
<th>Part-time FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc Data Science</td>
<td>£21,000*</td>
<td>£2,098*</td>
</tr>
<tr>
<td>MSc Particle & Nuclear Physics</td>
<td>£25,100</td>
<td>£2,098*</td>
</tr>
<tr>
<td>MSc Theoretical Physics</td>
<td>£11,500*</td>
<td>£2,098*</td>
</tr>
<tr>
<td>PhD Natural Sciences</td>
<td>£4,195*</td>
<td></td>
</tr>
<tr>
<td>PhD 6-years PT</td>
<td>£2,098*</td>
<td></td>
</tr>
</tbody>
</table>

* Figure shown is the 2017/18 fee level.

For international students

Annual fee

<table>
<thead>
<tr>
<th>Programme</th>
<th>Full-time FT</th>
</tr>
</thead>
<tbody>
<tr>
<td>MSc Mathematical Physics/Theoretical Physics 1-year FT</td>
<td>£20,500</td>
</tr>
<tr>
<td>MSc Particle & Nuclear Physics 1-year FT</td>
<td>£25,100</td>
</tr>
<tr>
<td>PhD 3-years FT</td>
<td>£21,000</td>
</tr>
</tbody>
</table>

"My favourite part of the MSc was the thesis project over the summer. It was a great experience to see first-hand what doing research would be like. It was also a fantastic opportunity to meet people in the field and I even got to go on a trip to CERN to present my research. I am currently doing a PhD in experimental particle physics here in Edinburgh, which I would not have done without the summer project."

Emmy Gabriel, MSc Theoretical Physics graduate, currently studying for a PhD.
A large number of scholarships, loans and other funding schemes are available for your postgraduate studies. It is only possible to show a small selection in print.

To see the full range, please visit: www.ed.ac.uk/student-funding/postgraduate

Scholarships at the University of Edinburgh

- Beit Trust •
 *Beit Trust and the University of Edinburgh Scholarships jointly fund postgraduate students from Malawi, Zambia and Zimbabwe to undertake a masters: www.beittrust.org

- Centre for Doctoral Training in Soft Matter and Functional Interfaces (SOFT CDT) •
 *This is a tri-institutional collaboration between the universities of Durham, Edinburgh and Leeds. It typically offers 12 studentships a year, with two placed in the School of Physics & Astronomy: www.dur.ac.uk/soft-matter/softcdt

- Edinburgh Global Masters Scholarships •
 *A number of scholarships are available to international students for masters study: www.ed.ac.uk/student-funding/masters

- Edinburgh Global Research Scholarships •
 *These scholarships are designed to attract high-quality international research students to the University: www.ed.ac.uk/student-funding/global-research

- Edinburgh Principal’s Career Development Scholarships •
 *A number of scholarships, open to UK, EU and international PhD students: www.ed.ac.uk/student-funding/development

- Enlightenment Scholarships •
 *The University is currently developing a new style of PhD scholarship to attract the best PhD applicants from around the world. These scholarships will provide funding for up to four years. For the latest information, and for details on which Schools will be participating, please check: www.ed.ac.uk/student-funding/enlightenment

- Edinburgh Syrian Postgraduate Scholarships •
 *A number of scholarships are available to postgraduate students from Syria studying a full-time one-year masters: www.ed.ac.uk/student-funding/postgraduate/syria

- Higgs Centre MSc Prize Scholarships •
 *The Higgs Centre for Theoretical Physics offers up to two scholarships in Theoretical or Mathematical Physics. These scholarships will be awarded on the basis of academic merit to students of all nationalities who are accepted for admission to MSc Theoretical Physics or Mathematical Physics: www.ph.ed.ac.uk/higgs-centre-scholarships

- Highly Skilled Workforce Scholarships •
 *A number of scholarships are available to UK nationals permanently domiciled in Scotland, and to EU nationals domiciled either on mainland EU or in Scotland, who have been accepted on an eligible full- or part-time masters programme. The scholarships, which are funded by the Scottish Funding Council and subject to annual confirmation, cover the UK/EU tuition fee. At the time of printing, we are awaiting confirmation of these scholarships from the Scottish Government: www.ed.ac.uk/uk-eligible-full-time-scholarshhp

- Julius Nyerere Masters Scholarships (Tanzania) •
 *One scholarship is available to citizens of Tanzania who are normally resident in Tanzania who are accepted on a full-time masters programme: www.ed.ac.uk/student-funding/jnyerere

- The Scottish Doctoral Training Centre in Condensed Matter Physics •
 *This is a tri-institutional collaboration between the universities of St Andrews, Edinburgh and Heriot-Watt. It offers more than 10 four-year PhD fully funded studentships each year: www.phd.ac.uk/doctoral-training

- Scottish Universities Physics Alliance (SUPA) Prize PhD Scholarships •
 *These prestigious and competitive awards are intended to attract outstanding students from around the world, irrespective of nationality, to study for a PhD: http://japply.supa.ac.uk

- SFC Higgs Centre Studentships •
 *The Higgs Centre will offer at least two PhD studentships each year, funded by the Scottish Funding Council grant. Candidates should have a first class undergraduate degree, or equivalent, good mathematical skills, and strong motivation to conduct research in theoretical physics. Students in all areas of theoretical physics will be considered: www.ph.ed.ac.uk/phd-funding/uk-eu

Research council awards

Research councils offer awards to PhD students in most of the Schools within the University of Edinburgh. All scholarship applications from the research councils must be made through the University, through your School or College office. Awards can be made for both taught and research programmes.

Normally only those UK/EU students who have been resident in the UK for the preceding three years are eligible for a full award. For some awards, candidates who are EU nationals and are resident in the UK may be eligible for a fees-only award. The UK Government has confirmed that EU postgraduate research students commencing their studies in 2018/19 will retain their fee status and eligibility for research council support for the duration of their programme: www.ed.ac.uk/student-funding/research-council

The University also offers a number of scholarships in partnership with the following overseas government agencies:

- Chile •
 *National Commission for Scientific and Technological Research (CONICYT): www.conicyt.cl

- Colombia •
 *Administrative Department of Science, Technology and Innovation (Colciencias): www.colciencias.gov.co

- Ecuador •
 *Secretaria Nacional de Educacion Superior, Ciencia y Tecnologia (SENESCYT): www.educaesuperior.gob.ec

- Israel •
 *Ministry of Higher Education and Scientific Research: www.imeisrael.org.uk

- Mexico •
 *National Council of Science and Technology of the United Mexican States (CONACYT): www.conacyt.mx
 *Banco de Mexico and the Banco de Mexico’s FIDERH trust (FIDERH): www.fiderh.org.mx
 *Fundacion Mexicana para la Educacion, La Tecnologia y la Ciencia (FUNED): www.funed.org

Other sources of funding

The following are examples of the many scholarships and support schemes available to students from particular countries who meet certain eligibility criteria.

- Chevening Scholarships •
 *A number of full and partial funding scholarships are available to one-year masters students: www.chevening.org

- Commonwealth Scholarships •
 *Scholarships available to students who are resident in any Commonwealth country, other than the UK: www.gov.uk/chiefdelegate

- Marshall Scholarships (USA) •
 *Scholarships available to outstanding US students wishing to study at any UK university for at least two years: www.marshallscholarship.org

- Scotland’s Saltire Scholarships •
 *A number of scholarships open to students who are citizens permanently and ordinarily resident in Canada, China, India, Pakistan and the USA for one year of masters study: www.ed.ac.uk/student-funding/saltire
The School of Physics & Astronomy's teaching and administration centre is in the James Clerk Maxwell Building, on the University’s King’s Buildings campus, about two miles south of the city centre. The Institute for Astronomy is based at the Royal Observatory, also in the south of the city.
On 23 June 2016 the UK electorate voted in a national referendum to leave the European Union. At the time of going to print, there was no immediate, material change known that would impact on applicants for 2018 entry. However we recommend that you check online for the latest information before you apply: www.ed.ac.uk/news/eu

The University’s standard terms and conditions will form an essential part of any contract between the University of Edinburgh and any student offered a place here. Our full terms and conditions are available online: www.ed.ac.uk/student-recruitment/terms-conditions

© The University of Edinburgh 2017. No part of this publication may be reproduced without written permission of the University. The University of Edinburgh is a charitable body registered in Scotland, with registration number SC005336.

Illustration by:
Katy Wiedemann, MA Illustration

The front cover shows a prototype of a dipole bending magnet from the Large Hadron Collider (LHC) at CERN, which was presented to the University in 2010. The existence of the Higgs Boson, first predicted by Professor Peter Higgs while working at the University in 1964, was confirmed at the LHC in 2012. Professor Higgs received the Nobel Prize in Physics in 2013 for his work. He is now an Emeritus Professor at the University.

#drawntoedinburgh