Informatics

Influencing the world since 1583
“Edinburgh isn’t so much a city, more a way of life . . . I doubt I’ll ever tire of exploring Edinburgh, on foot or in print.”

Ian Rankin
Best-selling author and alumnus
Influencing the world since 1583

For more than 400 years the University of Edinburgh has been changing the world. Our staff and students have explored space, won Nobel Prizes and revolutionised surgery. They’ve published era-defining books, run the country, made life-saving breakthroughs and laid the foundations to solve the mysteries of the universe.

Our distinguished alumni include NASA astronaut Piers Sellers, former MI5 Director-General Dame Stella Rimington, Olympians Sir Chris Hoy and Dame Katherine Grainger and historical greats such as philosopher David Hume, suffragist Chrystal Macmillan, who founded the Women’s International League for Peace and Freedom, and physicist and mathematician James Clerk Maxwell.

International collaboration
An internationally renowned centre for academic excellence, we forge world-class collaborations with partners such as the California Institute of Technology (Caltech), Stanford University, the University of Melbourne, Peking University, the University of Delhi and the University of KwaZulu-Natal. As a member of the League of European Research Universities and the Coimbra Group, we link up with leading institutions across Europe.

Linking research and commerce
We were one of the first UK universities to develop commercial links with industry, government and the professions. Edinburgh Innovations promotes and commercialises our research excellence and can assist you in taking the first step to market, through collaborative research, licensing technology or consultancy.

Enhancing your career
We are committed to embedding employability in your University experience and have an impressive track record for graduate employment. From volunteering schemes to our sector-leading careers service, we provide you with opportunities to develop your skills, knowledge and experience, giving you an edge in the competitive job market.

TOP 50
We’re consistently ranked one of the top 50 universities in the world. We’re 20th in the 2020 QS World University Rankings.

4TH
We’re ranked fourth in the UK for research power, based on the 2014 Research Excellence Framework.*

83%
The majority of our research – 83 per cent – is considered world leading or internationally excellent.*

TOP 100
We are ranked in the top 10 in the UK and in the top 100 in the world for the employability of our graduates.†

£403m
In 2017/18 we won £403 million in competitive research grants.

19
There are 19 Nobel Prize winners who are alumni of the University or have been members of academic staff here.

22ND
We’re ranked 22nd in the world’s most international universities.‡ Since 2010, we have taught students from more than 160 countries.

* Times Higher Education, Overall Ranking of Institutions
† Times Higher Education, Global Employability University Ranking 2018
‡ Times Higher Education: The World’s Most International Universities 2019
Taught masters programmes

We offer a suite of taught master of science (MSc) programmes, each featuring two taught semesters of lectures, tutorials, practical work and written assignments, after which you will complete a major project and dissertation.

www.ed.ac.uk/pg/992

Advanced Technology for Financial Computing

MSc 1 yr FT

Programme description
This new programme will provide you with a critical and practical appreciation of how data, computing and artificial intelligence technologies can be used and developed to deliver value in organisations with finance, risk and decision-making related digitalisation from both technology and business perspectives. The move towards digital organisations offers great potential for small and large, public and private enterprises. The University is the UK’s second largest financial centre after London and is leading cutting-edge, data-driven innovation to become the data capital of Europe. This programme is taught by world class researchers and educators. It is based on full-time cross-disciplinary study and has strong links to existing centres of research excellence within three world-class academic Schools – the School of Informatics, Edinburgh Business School and the School of Mathematics.

Programme structure
This MSc consists of approximately seven months of taught courses across two semesters and up to four months of project work leading to a dissertation focused on both academic and real-world industry challenges. It provides a unique blend of advanced technical courses, including finance-related sectors, and digital business skills with an emphasis on finance elements (minimum 30 credits) from Edinburgh Business School. The programme provides you with unique interdisciplinary training. While the computing courses build up your technical skills, maths and finance related courses develop your ability to understand the finance system challenges associated with the development, implementation and exploitation of technical solutions.

COMPELLARY COURSES PROPOSED INCLUDE:
- Machine Learning Practical or Data Analytics with High Performance Computing: Data-driven Business and Behaviour Analytics; Informatics Research Review; Informatics Project Proposal.

Career opportunities
Graduates will be equipped with the strong technology knowledge and background to keep up with developments in computing technologies and business awareness. Typical areas in which to pursue a career might include quantitative developer, financial system architect, application engineer, financial system consultant, software developer, and data scientist (in academia or industry), as well as financial system engineers of various kinds in IT firms, banks, and the investment and finance sectors, or in government and public sector positions.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/internationalgraduate-entry), in a related subject such as computer science, informatics, engineering, mathematics, or physics or another quantitative discipline.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Programme Contact
Informatics Teaching Organisation
Tel +44 (0)131 651 3266
Email ito@inf.ed.ac.uk

www.ed.ac.uk/pg/107

Artificial Intelligence

MSc 1 yr FT (2-3 yrs PT available for UK/EU students)

Programme description
This MSc is taught at the UK’s longest established centre for artificial intelligence, which remains one of the best in the world. Many of your courses will be taught by internationally renowned researchers, spanning a wide range of areas in artificial intelligence and drawing on research in related fields such as neuroscience, cognitive science, linguistics and mathematics. We aim to give you the fundamental knowledge and practical skills needed to design, build, and apply AI systems in your chosen area of specialisation.

Programme structure
You will complete two taught semesters of lectures, tutorials and practical and written assignments, followed by a major project and dissertation. About half your taught course credits must be chosen from areas of artificial intelligence, with remaining courses from AI or other areas of Informatics. Course offerings reflect staff research interests, which include knowledge representation and reasoning, applied and theoretical machine learning, natural language processing, robotics, and computer vision. Recommended paths through the programme enable you to specialise in particular areas of AI according to your background and interests.

COMPELLARY COURSES PROPOSED INCLUDE:
- Informatics Research Review; Informatics Project Proposal; Dissertation.

OPTION COURSES PROPOSED INCLUDE:
- Accelerated Natural Language Processing; Advanced Vision; Automatic Speech Recognition; Decision Making in Robots and Autonomous Agents; Machine Learning & Pattern Recognition; Natural Language Understanding; Generation, and Machine Translation; Probabilistic Modelling and Reasoning; Reinforcement Learning; Robotics: Science and Systems.

Career opportunities
Our students are well prepared for both employment and academic research. The emphasis is on practical techniques for the design and construction of intelligent systems, preparing graduates to work in a variety of specialisms, from fraud detection software to recommendation systems and assistive robots. Recent graduates are now working at international firms such as Amazon, Google, IBM, and JP Morgan, as well as at smaller companies and start-ups, both in the UK and internationally.

Entry requirements
A UK 2:1 honours degree, or an international equivalent (www.ed.ac.uk/internationalgraduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics or psychology. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. Competent programming skills are essential. During your degree you must have completed a programming course in at least one of the following: C/C++, Java, Python, R, Matlab, Haskell, ML.

During your degree you must have completed the equivalent to 60 credits of mathematics that have typically covered the following subjects/topics: calculus (differentiation and integration), linear algebra (vectors and multi-dimensional matrices), discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proofs), and probability (concepts in discrete and continuous probabilities, Markov chains etc). Prior knowledge of probability concepts is especially important for the artificial intelligence degree.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Programme Contact
Informatics Teaching Organisation
Tel +44 (0)131 651 3266
Email ito@inf.ed.ac.uk

See also...
Some of our taught masters are closely related to those in other Schools. You may be interested in programmes offered by Edinburgh College of Art, or the Schools of Biological Sciences, Mathematics: Philosophy, Psychology & Language Sciences; or Physics & Astronomy.

www.ed.ac.uk/studying/prospectus-request
Cognitive Science

Programme description

Cognitive science is an exciting, interdisciplinary area spanning fields including computer science, linguistics, psychology, neuroscience and philosophy. The School of Informatics has particular strengths in the computational study of higher cognition and reasoning, speech and language, and neuroscience, as well as in related areas such as human-computer interaction, robotics, and computer vision. This programme offers courses in many of these areas, providing you with a strong grounding in both computational and mathematical foundations while allowing you to pursue specialisations in your particular interests. Many students also take advantage of relevant courses offered by the School of Psychology, Philosophy, Language Sciences or other parts of the University.

Programme structure

You will complete two taught semesters of lectures, tutorials and practical and written assignments, followed by a major project and dissertation. About half your taught course credits must be chosen from areas in computer science (foundations and systems), with remaining courses from these or other areas of informatics. Course offering is flexible to fit current research interests. The programme will give you an understanding of the expanding domain of cognitive science through formal study and experiments. It is excellent preparation for a rewarding academic or professional career. The quality of cognitive science research in the School has brought the School recognition and esteem both in academic and non-academic circles.

Master of Science (MSc) 1 year full-time (2-3 years part-time available for UK/EU students)

English language requirements

A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics or psychology, plus experience in computer programming. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. Competent programming skills are essential. During your degree you must have completed a computing course in at least one of the following: C/C++, Java, Python, R, Matlab, Haskell, ML. During your degree you must have completed the equivalent of 60 credits of mathematics that have typically covered the following subjects: Topics in discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proofs), and probability (in discrete and continuous probabilities, Markov chains, etc).

Course units previously offered include:

Informatics Research Review; Informatics Project Proposal; Dissertation.

Fees and funding

For fees see page 24 and for funding information see page 26.

Programme Contact

Informatics Teaching Organisation

Tel +44 (0)131 651 3266

Email ito@inf.ed.ac.uk

www.ed.ac.uk/pg/108

Computer Science

Programme description

Our internationally recognised expertise in core computer science ranges from computer architecture to theoretical computer science. We provide a solid foundation in theoretical aspects of practical techniques. You can focus on the design, analysis, implementation and use of computer systems, or pursue a more theoretical direction with courses in areas such as cryptography, programming languages, or cryptography.

Programme structure

You will complete two taught semesters of lectures, tutorials and practical and written assignments, followed by a major project and dissertation. About half your taught course credits must be chosen from areas in computer science (foundations and systems), with remaining courses from these or other areas of informatics. Course offering is flexible to fit current research interests. The programme will give you an understanding of the expanding domain of computer science through formal study and experiments. It is excellent preparation for a rewarding academic or professional career. The quality of computer science research in the School has brought the School recognition and esteem both in academic and non-academic circles.

Master of Science (MSc) 1 year full-time (2-3 years part-time available for UK/EU students)

English language requirements

A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics or psychology, plus experience in computer programming. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. Competent programming skills are essential. During your degree you must have completed a computing course in at least one of the following: C/C++, Java, Python, R, Matlab, Haskell, ML. During your degree you must have completed the equivalent of 60 credits of mathematics that have typically covered the following subjects: Topics in discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proofs), and probability (in discrete and continuous probabilities, Markov chains, etc).

Course units previously offered include:

Informatics Research Review; Informatics Project Proposal; Dissertation.

Fees and funding

For fees see page 24 and for funding information see page 26.

Programme Contact

Informatics Teaching Organisation

Tel +44 (0)131 651 3266

Email ito@inf.ed.ac.uk

www.ed.ac.uk/pg/110

Cyber Security, Privacy & Trust

Programme description

Our societies are critically dependent on computer software. Electronic systems are ubiquitous and governments, financial and transport organisations, and telecommunication companies all possess and manage huge amounts of our personal information. So many aspects of our lives rely on and are recorded by computerised systems, and where we have witnessed a significant increase in attacks targeting computer infrastructure. The cyber security threat has been characterised as serious as terrorism by the GCHQ, and the need for practical and theoretical solutions to the problem is growing. You will study the computational principles, methods and mechanisms for safeguarding sensitive applications and learn how to evaluate, design, and implement secure and trustworthy systems in complex distributed systems.

The University is recognised as an academic centre of excellence in cyber security research and you will be trained by academic experts in a uniquely broad combination of theory and practice.

Programme structure

You will complete two taught semesters of lectures, tutorials and practical and written assignments, followed by a major project and dissertation. About half your taught course credits must be chosen from security-related courses in informatics. You can round out your programme with additional courses from this area, from courses outside the School dealing with legal and societal issues of security and privacy, or from courses in other areas of informatics.

Career opportunities

This programme will put you at the cutting edge of cyber security, privacy, and trust, opening up opportunities in the commercial, public and academic sectors. Graduates will have the necessary background to keep up with developments in cyber security, both in research and engineering. Typical career are security analyst, security architect, security engineer, security administrator, cyber risk analyst, cryptographer, cryptanalyst, security consultant, security auditor, secure software developer, penetration tester, ethical hacker, and security researcher (in academia or industry), as well as all professionals of security schemes in government and public sector organisations. There are well-established career paths and certifications schemes including certified information systems security professional run by the international information system security certification consortium.

Entry requirements

A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics or psychology, or any other quantitative discipline. A typical offer will normally require a UK first class honours degree. You should have programming experience, with an introductory computing course on your transcript, and the equivalent of 60 credits of mathematics covering calculus (differentiation and integration), linear algebra (vectors and multidimensional matrices), discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proofs), and probability (in discrete and continuous probabilities, Markov chains, etc).

English language requirements

See page 24.

Fees and funding

For fees see page 24 and for funding information see page 26.

Programme Contact

Informatics Teaching Organisation

Tel +44 (0)131 651 3266

Email ito@inf.ed.ac.uk

www.ed.ac.uk/pg/971
COMPELLARY COURSES PREVIOUSLY OFFERED INCLUDE:
Informatics Research Review; Informatics Project Proposal; Dissertation.

OPTION COURSES PREVIOUSLY OFFERED INCLUDE:
Applied Databases; Bioinformatics 1: Combinatorial Optimization; Database Systems; Extreme Computing; Introductory Applied Machine Learning; Data Mining and Exploration; Reinforcement Learning; Social and Technological Networks; Text Technologies for Data Science.

Career opportunities
You will develop specialist, advanced skills in data science methods and their applications. You will gain practical experience and a thorough theoretical understanding of the field, making you attractive to a wide range of employers or preparing you for further academic study.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics, psychology, or another quantitative discipline. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. You should have computer programming experience, with an introductory programming course on your transcript, and the equivalent of 60 credits of mathematics during your degree that have typically covered the following subjects/topics: calculus (differentiation and integration), linear algebra (vectors and multidimensional matrices), discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proof), and probability (concepts in discrete and continuous probabilities, Markov Chains, etc).

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Programme Contact
Informatics Teaching Organisation
Tel +44 (0)131 651 3266
Email info@inf.ed.ac.uk

Data Science
MSc 1 yr FT (2–3 yrs PT available for UK/EU students)
Programme description
Data science is the study of the computational principles, methods and systems for extracting and structuring knowledge from data, and the application and use of those principles. Large data sets are now generated by almost every activity in science, society, and commerce – ranging from molecular biology to social media, from sustainable energy to health care.

As an MSc Data Science student you will explore how to efficiently find patterns in these vast streams of data. Many research areas have tackled parts of this problem; machine learning focuses on finding patterns and making predictions from data; ideas from algorithms and databases are required to build systems that scale to big data streams; and separate research areas have grown around different types of unstructured data such as text, images, sensor data, video and speech.

Programme structure
You will acquire a breadth of expertise by taking at least one course from each of three areas of data science (machine learning and optimization; databases and data management; applications). Additional courses can be used to gain further depth in any area.

OPTION COURSES PREVIOUSLY OFFERED INCLUDE:
Informatics Research Review; Informatics Project Proposal; Dissertation.

OPTION COURSES PREVIOUSLY OFFERED INCLUDE:
Applied Databases; Bioinformatics 1: Combinatorial Optimization; Database Systems; Extreme Computing; Introductory Applied Machine Learning; Data Mining and Exploration; Reinforcement Learning; Social and Technological Networks; Text Technologies for Data Science.

Career opportunities
You will develop specialist, advanced skills in data science methods and their applications. You will gain practical experience and a thorough theoretical understanding of the field, making you attractive to a wide range of employers or preparing you for further academic study.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics, psychology, or another quantitative discipline. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. You should have computer programming experience, with an introductory programming course on your transcript, and the equivalent of 60 credits of mathematics during your degree that have typically covered the following subjects/topics: calculus (differentiation and integration), linear algebra (vectors and multidimensional matrices), discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proof), and probability (concepts in discrete and continuous probabilities, Markov Chains, etc).

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Programme Contact
Informatics Teaching Organisation
Tel +44 (0)131 651 3266
Email info@inf.ed.ac.uk

Design Informatics/ Advanced Design Informatics
MSc 1 yr FT (Design Informatics) or 21 mths FT (Advanced Design Informatics)
Programme description
Design Informatics combines data science with design thinking in a context of critical enquiry and speculation. We build a value-aware, reflective practice at the interface between data and society, combining theory and research with design thinking and design research through design. You will use this in working with the Internet of things and physical computing, machine learning, speech and language technology, computer security, and blockchain technologies. You will connect technology with society, health, architecture, bio-design, craft, finance, tourism, and a host of other real-world contexts, through case studies and individual and collaborative projects. You will understand user experience in the wider sociocultural context, through an agile programme of hacking, making and materialising new products and services. The courses Design with Data and Design Informatics Project give you the opportunity to work with an external partner such as the Royal Bank of Scotland, Edinburgh City Council, or the National Museum of Scotland.

Programme structure
Throughout the programme, you will be working both individually and in teams of designers and computer scientists. Everyone will have to write code and everyone will have to make physical objects. Several courses, including your dissertation, will involve presenting the artefact, product, service or interactive experience that you have created to the general public in a show.

COMPULSORY COURSES PREVIOUSLY OFFERED INCLUDE:
Design Informatics: Histories and Futures; Case Studies in Design Informatics 1; Data Science for Design; Design with Data; Design Informatics Project; Dissertations: plus Case Studies 2 (Advanced Design Informatics only).

OPTION COURSES PREVIOUSLY OFFERED INCLUDE:
Data Science for Design; Product Development; Innovation driven Entrepreneurship; The Human Actor; Working with User; Dynamic Web Design; Technology Entrepreneurship and Commercialisation. You may choose 20 credits (60 for Advanced Design Informatics) of optional courses.

Career opportunities
Our graduates are well regarded by employers worldwide. Many go on to work in the technology industry as software engineers, UI/UX designers, product managers and developers, or with the software and hardware giants that have become household names. Others go on to further study and research. Recent graduates now work as software developers and engineers, programmers, games designers and analysts for companies including Airbus, Citigroup, NCR Corporation, BT and Skyscanner.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics or psychology. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. Competent programming skills are essential. During your degree you must have completed a programming course in at least one of the following: C/C++, Java, Python. R, Matlab, Haskel, ML. During your degree you must have completed the equivalent to 60 credits of mathematics that have typically covered the following subjects/topics: calculus (differentiation and integration), linear algebra (vectors and multidimensional matrices), discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proof), and probability (concepts in discrete and continuous probabilities, Markov Chains, etc).

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Programme Contact
Informatics Teaching Organisation
Tel +44 (0)131 651 3266
Email info@inf.ed.ac.uk

Informatics
MSc 1 yr FT (2–3 yrs PT available for UK/EU students)
Programme description
Informatics is the study of how natural and artificial systems store, process and communicate data and information, and it embraces interdisciplinary connections to understand and model computation and information processing in all its forms. This programme builds on the breadth of both the foundational and strength world research in many areas of informatics to develop students’ ability to understand and model computation in natural (biological or social) systems.

Programme structure
You will complete two taught semesters of lectures, tutorials and practical and written assignments, followed by a major project and dissertation. About half of taught courses must be chosen from areas focusing on computation in natural systems, such as bioinformatics, social networks, neuroinformatics, or cognitive science. Additional courses may be chosen from a wide range of options across the School, including courses in computer systems, theoretical computer science, artificial intelligence, and software engineering. Guidance is provided to help you choose a set of courses that work well together.

COMPULSARY COURSES PREVIOUSLY OFFERED INCLUDE:
Informatics Research Review; Informatics Project Proposal; Dissertation.

OPTION COURSES PREVIOUSLY OFFERED INCLUDE:
Algorithmic Game Theory and its Applications; Bioinformatics 1: Computational Cognitive Science; Human-Computer Interaction; Introduction to Quantum Computing: Music Informatics; Natural Computing: Neural Computation; Social and Technological Networks; Text Technologies for Data Science.

Career opportunities
Our graduates are well regarded by employers worldwide. Many go on to work in the technology industry as software engineers, UI/UX designers, product managers and developers, or with the software and hardware giants that have become household names. Others go on to further study and research. Recent graduates now work as software developers and engineers, programmers, games designers and analysts for companies including Airbus, Citigroup, NCR Corporation, BT and Skyscanner.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/ international/graduate-entry), in informatics, artificial intelligence, cognitive science, computer science, electrical engineering, linguistics, mathematics, philosophy, physics or psychology. Entry to this programme is competitive. A typical offer will normally require a UK first class honours degree. Competent programming skills are essential. During your degree you must have completed a programming course in at least one of the following: C/C++, Java, Python. R, Matlab, Haskel, ML. During your degree you must have completed the equivalent to 60 credits of mathematics that have typically covered the following subjects/topics: calculus (differentiation and integration), linear algebra (vectors and multidimensional matrices), discrete mathematics and mathematical reasoning (e.g. induction and reasoning, graph theoretic models, proof), and probability (concepts in discrete and continuous probabilities, Markov Chains, etc).

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Programme Contact
Informatics Teaching Organisation
Tel +44 (0)131 651 3266
Email info@inf.ed.ac.uk

The University of Edinburgh
Informatics Postgraduate Opportunities 2020

See also...
You may also be interested in the master of arts (MA) or master of fine arts (MFA) Design Informatics programme in the Edinburgh College of Art prospectus (www.ed.ac.uk/pg/b21).

www.ed.ac.uk/studying/prospectus-request

www.ed.ac.uk/pg/902
www.ed.ac.uk/pg/803 (Design Informatics)
www.ed.ac.uk/pg/802 (Advanced Design Informatics)

www.ed.ac.uk/pg/111
EPCC taught masters programmes

High Performance Computing/High Performance Computing with Data Science

MSc 1 yr FT (2 or 3 yrs FT available for UK/EU students) PgDip High Performance Computing 9 mths FT

Programme description
You will study at EPCC, the UK’s leading supercomputing centre. EPCC is a major provider of high performance computing (HPC) training in Europe with an international reputation for HPC education and research. Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science. Our MSc programmes have a strong practical focus and provide access to leading edge HPC systems, with recent examples including Cirrus, a national Tier 2 heterogeneous system, and, previously, ARCHER, the UK’s national supercomputing service, with more than 100,000 CPU cores which was hosted by EPCC. EPCC’s current list of hosted systems can be found online: www.epcc.ed.ac.uk/facilities

Programme structure
Both programmes take the form of two semesters of taught courses followed by a dissertation project. Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies, up to and including national level HPC systems and cutting edge hardware. Both programmes include compulsory courses (i.e. for HPC, seven for HPC with Data Science), which provide a broad-based coverage of the fundamentals of HPC, parallel computing and (for HPC with Data Science) data science. Optional courses focus on specialist areas relevant to computational and data science. Assessment is by a combination of coursework and examination.

MSc High Performance Computing with Data Science

Data science involves the manipulation, processing and analysis of data to extract knowledge, and HPC provides the power that underpins it. You will learn the multidisciplinary skills and knowledge in both HPC and data science to unlock the knowledge contained in the increasingly large, complex and challenging data sets that are now generated across many areas of science and business.

Career opportunities
Our graduates are in high demand and employed across a range of commercial areas, for example software/applications development, petroleum engineering, finance and HPC support. Others have gone on to PhD research in fields that use HPC technologies, including astrophysics, biology, chemistry, geosciences, informatics and materials science.

Industry-based projects
Through EPCC’s strong links with industry, we also offer the opportunity to undertake a dissertation project in collaboration with industrial partners, including local, national and international companies. Further information is available online.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), in a relevant subject such as computer science and informatics, physics, mathematics, engineering, biology, chemistry and geosciences. You must be a competent programmer for these programmes and how they differ, see: www.epcc.ed.ac.uk/pg/187 (High Performance Computing) and 871 (High Performance Computing with Data Science)

Programme Contact
Ben Morse, Postgraduate Programmes Manager Tel +44 (0)131 651 3398 Email msc@epcc.ed.ac.uk

Archie C. Academic Director Programme Contact

Online learning programmes

Data Science, Technology & Innovation

MSc 6 yrs PT, PgDip 4 yrs PT, PgCert 2 yrs PT PgHdDev up to 2 yrs FT

Programme description
Demand is growing for high value data specialists across the sciences, medicine, arts and humanities. The aim of this unique, modular, online learning programme is to fully equip tomorrow’s data professionals, offering different entry points into the world of data science, and enhance existing career paths with an additional dimension in data science. You will develop a strong foundation of knowledge of specific disciplines as well as direction in technology, concentrating on the practical application of data research in the real world.

Programme structure
For MSc, you must complete Practical Introduction to Data Science, 100 credits from the courses listed below, and a dissertation. For PgDip, you must complete Practical Introduction to Data Science and 100 credits from the courses listed below. For Postgraduate Professional Development (PgHdDev) you may choose a maximum of 50 credits from the courses listed below.

Career opportunities
This programme is intended for professionals wishing to develop an awareness of applications and implications of data intensive systems. Our aim is to enhance existing career paths with an additional dimension in data science, through new technological skills and/or better ability to engage with data in target domains of application.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), or a medical degree (MBChB or equivalent). Relevant work experience may be considered. If you plan to apply on this basis please include a detailed CV. Your application’s supporting statement should include details of how your professional background demonstrates your ability to undertake the programme. If you are unsure if you have relevant work experience please contact us by emailing: datascience@ed.ac.uk

You may be admitted to certificate level only in the first instance.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

EPCC offers at a minimum of two John Fisher HPC Masters Scholarships, open to all nationalities. Each scholarship has a value equivalent to half of your fees for one academic year.

More information: www.epcc.ed.ac.uk/msc/fees-funding

Programme Contact
Cal Andrade
Tel +44 (0)131 650 4844
Email datascience@ed.ac.uk

"The Data Science, Technology & Innovation postgraduate programmes build on Edinburgh’s strength in data science, interdisciplinarity and innovation. They offer a unique combination of technical depth, applicable skills and exploitable knowledge. These online learning programmes are accessible to a wide range of backgrounds. Offered part-time, intermittent, they are an excellent route to re-skilling or upskilling.

Professor David Robertson, Head of the College of Science & Engineering
Research at the School of Informatics

In the last Research Excellence Framework we were ranked first in the UK for research power in computer science and informatics (Research Fortnight REF 2014) with 85 per cent of our research rated 4* world leading or 3* internationally excellent on the overall quality profile. We hope the research you undertake will become part of our future contribution.

The research areas we offer reflect our leadership in the field. Our vast research portfolio is carried out across several institutes: communities of research staff and students with access to specialist facilities and funding. The research programmes we offer follow the same institute grouping, giving you the UK’s greatest choice in core and multidisciplinary areas.

Research options

The most common research programme is the three-year Doctor of Philosophy (PhD). You will embark upon original research under supervision and present the results in a written thesis and oral examination.

The Master of Philosophy (MPhil) requires at least two years of supervised research study. It would usually include taught courses in your first year of study and more independent research in your second year.

The MSc by Research is an opportunity to gain research skills by undertaking independent study related to the School’s ongoing research programme, over a period of one year.

Entry requirements

A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), in an appropriate subject. Please check the specific entry requirements for your programme online before applying.

UKRI/EPSRC Centres for Doctoral Training

The University won a share of a £350 million investment in UK science and engineering postgraduate training by the Engineering and Physical Sciences Research Council (EPSRC).

The School of Informatics hosts a Centre for Doctoral Training in both Biomedical Artificial Intelligence and Natural Language Processing, and is also a partner in the Centre in Robotics and Autonomous Systems in collaboration with Heriot-Watt University.

These four-year programmes combine bespoke training and research. For the latest information, see: www.ed.ac.uk/informatics/cdts

Research opportunities

www.epcc.ed.ac.uk
www.ed.ac.uk/pg/855

EPCC

PhD 3 yrs FT

EPCC offers the opportunity to study for a PhD in topics related to high performance computing (HPC), computational science, data science, and software engineering.

Research environment

Founded in 1990, EPCC is one of the leading supercomputing centres in Europe and a major provider of training in high performance computing. EPCC’s expertise includes advanced research, technology transfer, commercial consultancy and the provision of supercomputer services to academia and business.

EPCC has hosted multiple national HPC services including ARCHER and its planned successor ARCHER2 (2020 launch expected).

EPCC has a team of experienced academics, consultants and software engineers who have a wealth of expertise in the latest technologies. Our research covers software for future HPC systems, modelling and simulation, performance characterisation and benchmarking, and developing a pan European HPC service.

We are working on several big data research projects, ranging from earthquake prediction and astronomical data analysis to the development of international data infrastructure for managing today’s immense growth in data generation.

Meanwhile, our software specialists have an impressive portfolio of projects, including many industrial applications. We remain at the forefront of the field, for example through our leadership of the UK’s Software Sustainability Institute, ensuring that today’s new software continues to be improved and supported in the future.

Career opportunities

Graduates from EPCC have found rewarding employment in the computing industry, universities and government organisations.

English language requirements

See page 24.

Fees and funding

For fees see page 24 and for funding information see page 26. Specific studentships are available for PhDs in high performance computing. More information: www.epcc.ed.ac.uk/education-training/phds-high-performance-computing.

Programme Contacts

Dr Mark Bull, PhD Coordinator
Ben Morse, Postgraduate Programmes Manager
Tel +44 (0)31 651 3398
Email phd@epcc.ed.ac.uk

As a direct result of the Edinburgh team’s research, some of Scotland’s most remote communities are now enjoying superfast broadband for the first time. As befits an institution that operates at the leading edge of technology, the University’s School of Informatics recognises the importance of a fast and reliable broadband connection in this online age. In late 2007, a team of researchers from the School saw that they had the knowledge and resources necessary to make this a reality for people in remote communities, and set about creating the highly successful Tegola Wireless Community Broadband Project.

Project background

The School of Informatics team took up the challenge of deploying wireless networking in remote Scottish communities where high-speed broadband has not been available because the nearest telephone exchange is too far away. The Tegola network demonstrated the suitability of long-distance Wi-Fi technology even for areas like rural Scotland where the terrain can be difficult. To increase the stability and sustainability of the network, the resources of the School were used to develop certain engineering measures, and use of solar and wind power for self-powered masts, that would strengthen the network.

Project results

The head of BT Scotland had expressed the opinion that mesh networks like Tegola were not robust; however, experience has shown otherwise. In 2011 Tegola was successfully used for emergency medical services when a lightning strike knocked out the telephones to a wider area. As a direct result of the Edinburgh team’s research, some of Scotland’s most remote communities are now enjoying superfast broadband for the first time. For some it’s their first connection to the online world. Tegola has become a replicable model for community-driven local access network deployments in Scotland. It has also inspired research into tools, systems and techniques to aid communities in deploying and maintaining similar rural networks.

See more online: www.ed.ac.uk/research/impact
ANC: Machine Learning, Computational Neuroscience, Computational Biology

PhD 3 yrs FT (6 yrs PT available for UK/EU students)
MPhil 2 yrs FT (4 yrs PT available for UK/EU students)
MSc by Research 1 yr FT (2 yrs PT available for UK/EU students)

The Institute for Adaptive and Neural Computation (ANC) is dedicated to the theoretical and empirical study of adaptive processes in both artificial and biological systems. We are one of the UK's largest and most prestigious academic teams in these fields. We foster world-class interdisciplinary and collaborative research, bringing together a range of disciplines.

Research environment
Our research falls into three areas: machine learning; computational neuroscience; and computer biology.

In machine learning we develop probabilistic methods that find patterns and structure in data, and apply them to scientific and technological problems. Applications include areas as diverse as astronomy, health sciences and computing.

In computational neuroscience and neuroinformatics we study how the brain processes information, and analyse and interpret data from neuroscientific experiments.

The focus in the computational biology area is to develop computational strategies to store, analyse and model a variety of biological data (from protein measurements and genetics to animal and human behavioural data). If you are interested in these areas you should also consider the programme in Data Science (see page 15).

Career opportunities
The research you'll undertake at ANC is perfectly suited to a career in academia, where you'll be able to use your knowledge to advance this important field. Some graduates take their skills into commercial applications and find success in creating systems that can be used in everyday applications.

Specific entry requirements
ANC researchers come from many different academic backgrounds but most of our research requires prior training in mathematics.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

CISA: Automated Reasoning, Agents, Data Intensive Research, Knowledge Management

PhD 3 yrs FT (6 yrs PT available for UK/EU students)
MPhil 2 yrs FT (4 yrs PT available for UK/EU students)
MSc by Research 1 yr FT (2 yrs PT available for UK/EU students)

In this information age, the formalisation of representation of knowledge and automation of reasoning form the basis of the computerised systems that shape our world. At the Centre for Intelligent Systems and their Applications (CISA), we lead the way in research into this vital field, both in facilities and quality of research.

Research environment
You'll find a wide range of research areas within CISA, from using abstract logic and theorem-proving methods through to systems-oriented investigations. Our current research groups encompass agents and multi-agent systems, knowledge systems, mathematical reasoning, planning and activity management, and software systems and processes.

Intelligent systems are a driving force for change in areas ranging from reasoning on the web to industrial supply chain management. Aided by our links with commercial and government bodies, the research you'll undertake could shape the future of technology.

Tangible commercial links
CISA includes one of the most innovative collaborations between research and business – our Artificial Intelligence Applications Institute (AIAI). Through its resources and the engagement of staff and students in consultancy, training and joint projects, we offer solutions to commercial and government clients through the application of newly researched techniques.

Going further
While your research studies are a perfect route to a career in academia, they could also take you into the commercial world of applied intelligent systems. Software developers and the users of automated planning systems are among those who rely on the insights of our research. NASA, Hewlett Packard and animation company Pixar are just three of the organisations that have recently employed our graduates.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

Doctoral Research Centre in Data Science & Artificial Intelligence

PhD 3 yrs FT

This programme is offered jointly by the School of Informatics and the School of Mathematics.

Research environment
If researchers in this area wish to be leaders in AI and shape the technology landscape, they must be deeply conversant in both data science and AI to be able to direct and better understand how to research, develop and target technologies that will be the pioneering breakthroughs.

Data science is the study of the computational principles, methods and systems for extracting knowledge from data. Almost every activity in science, society and commerce now relies on data-driven decision making – from large data analytics in biology to small companies deploying data-collecting apps to millions of customers.

AI is the study of computational systems that demonstrate capabilities of perception, reasoning, learning and action that are typical of human intelligence. We have also recently seen an explosive growth in the capability of modern AI technologies. The great recent successes of modern AI, such as object recognition and game playing, are based on data-driven approaches rooted in machine learning and deep networks.

Our programme will allow you to specialise and perform advanced research at the interface of data science and AI and gain breadth and practical experience throughout the field. You will be supervised by one of our 85 world-renowned faculty members and will benefit from our links with commercial and government bodies, the research you'll undertake could shape the future of technology.

Tangible commercial links
CISA includes one of the most innovative collaborations between research and business – our Artificial Intelligence Applications Institute (AIAI). Through its resources and the engagement of staff and students in consultancy, training and joint projects, we offer solutions to commercial and government clients through the application of newly researched techniques.

Going further
While your research studies are a perfect route to a career in academia, they could also take you into the commercial world of applied intelligent systems. Software developers and the users of automated planning systems are among those who rely on the insights of our research. NASA, Hewlett Packard and animation company Pixar are just three of the organisations that have recently employed our graduates.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.
Research opportunities

For fees see page 24 and for funding information see page 26.

We anticipate a significant number of full studentships, covering tuition fees and funding from 17 cross-disciplinary research groups.

Robotarium, a national facility for research into robot interaction, will provide the technical skills and industry awareness to create an innovation pipeline from academic research to global markets.

Research environment

The robotics and autonomous systems area has been highlighted by the UK Government as one of the eight great technologies that underpin the UK’s industrial strategy for jobs and growth. Key application areas include manufacturing, assistive and medical robots, offshore energy, environmental monitoring, search and rescue, defence, and support for the ageing population.

The University of Edinburgh and Heriot-Watt University are jointly offering this innovative programme, which combines a strong grounding in current theory, methods and applications with flexibility for individualised study and a specialised PhD project.

Robotics and autonomous systems are increasingly studied beyond the range of classical engineering. Today robots represent one of the main areas of application of computer science and provide challenges for mathematicians and natural scientists. Areas of interest specific to the centre include: movement control; planning, decision making, bias and neuro Robotics, human robot interaction, healthcare applications, robot soccer, neuroprosthetics, underwater robotics, bipedal walking, service robots, robotic co-workers, computer vision, speech processing, computer animation realistic simulations, and machine learning.

You will have opportunities for three- to six-month internships with leading companies in your area, and to participate in our industrial engagement programme, exchanging ideas and challenges with our sponsor companies. Our partners in industry include companies working in offshore energy, environmental monitoring, defence, assisted living, transport, advanced manufacturing and education. They will provide the real-world context for research, as well as opportunities for reciprocal secondments, internships and involvement in our industrial engagement programme.

You will also have access to the outstanding facilities in the Edinburgh Robotarium, a national facility for research into robot interaction, supporting the research of more than 50 world-leading investigators from 17 cross-disciplinary research groups.

English language requirements
See page 24.

Fees and funding
We anticipate a significant number of full scholarships, covering tuition fees and living costs, will be available for eligible candidates. For further information, go online: www.ed.ac.uk/informatics/lds

For fees see page 24 and for funding information see page 26.

ICSA: Computer Architecture, Compilation & Systems Software, Networks & Communication

PhD 3 yrs FT (6 yrs PT available for UK/EU students)
MPhil 2 yrs FT (4 yrs PT available for UK/EU students)
MSc by Research 1 yr FT (2 yrs PT available for UK/EU students)

The Institute for Computing System Architecture (ICSA) will provide you with academic resources and industry links that are among the best in the world.

We’re home to the UK’s largest group of PhD researchers in the field, and host a Centre of Excellence in partnership with ARM, the world’s largest microprocessor intellectual property provider. We’re also a member of the European Network of Excellence on High Performance and Embedded Architecture and Compilation.

Research environment

Our students see their studies as a launch pad for their careers, and many have established themselves as world-class researchers and developers. By joining their ranks, you’ll be able to make your mark on the next generation of technological innovations. Currently, research is focused on the areas of compilers and architectures, parallel computing, wireless networking and processor-automated synthesis by iterative analysis.

Our research group is particularly strong, and currently working on expanding wireless reach within Scotland. While the scope for research is wide, each area is underpinned by our fundamental aims: to extend understanding of existing systems; to improve current systems; and to develop new architecture and engineering methods.

Encouraging success
You’ll be supported in your research by award-winning academic staff – including four Fellows of the Royal Academy of Engineering. They and other research colleagues have contributed to an extensive publications portfolio, featuring some of the most prestigious publications in the field.

You’ll graduate with more than an intensive knowledge of your field, you’ll also have established academic and personal links that will last a lifetime.

Career opportunities

Academic and business employers actively recruit ICSA graduates, many of whom are now designing the next generation of products for major software developers, or taking the lead in other entrepreneurial ventures.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

ILLC: Language Processing, Speech Technology, Information Retrieval, Cognition

PhD 3 yrs FT (6 yrs PT available for UK/EU students)
MPhil 2 yrs FT (4 yrs PT available for UK/EU students)
MSc by Research 1 yr FT (2 yrs PT available for UK/EU students)

Strongly interdisciplinary in nature, the Institute for Language, Cognition and Communication (ILLC) is dedicated to both basic and applied research in the computational study of language, communication and cognition, in both humans and machines. As technology focuses increasingly on language-based communication tools, research into the automation of language processing has become vital. ILLC offers you the broadest research scope in the UK, and a strong computational focus.

Research environment

Our primary areas of research are: natural language processing and computational linguistics; spoken language processing, dialogue and multimodal interaction; information extraction, retrieval and presentation; computational theories of human cognition; and educational and assistive technology.

Much of our research is applied to software development, in areas as diverse as social media, assisted living, gaming and education.

Cross-disciplinary culture
You may find yourself working closely with other schools within the University, particularly the School of Philosophy, Psychology & Language Sciences. Many of our researchers are involved in two cross-disciplinary research centres: the Human Communication Research Centre and the Centre for Speech Technology Research.

Career opportunities

While most of our graduates pursue an academic career, others find their skills are highly sought after in the technology industry. A number of our students undertake internships with large UK and international software developers, while others take up positions with major social media companies.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

IPAB: Robotics, Computer Vision, Computer Graphics & Animation

PhD 3 yrs FT (6 yrs PT available for UK/EU students)
MPhil 2 yrs FT (4 yrs PT available for UK/EU students)
MSc by Research 1 yr FT (2 yrs PT available for UK/EU students)

Supported by the dynamic research culture in the Institute for Perception, Action and Behaviour (IPAB), you can explore robotics that learn their own motor control, mimic animal behaviours, or produce autonomous and coordinated team actions. Alternatively, you can work with systems that interpret facial images and generate complex behaviour in animated characters. We aim to link strong theoretical perspectives with practical hands on construction, and provide the hardware and software support to realise this vision.

Excellent facilities

Our two large robotics labs contain a range of mobile platforms, humanoid robots and custom built actuators and systems that attract continuous interest from funders, industry and members of the public. Recent developments include the application of robotic hardware to prosthetics and assisted living, and a team that competes in the international robot soccer league. Our new Edinburgh Alliance for Robotics and Autonomous Systems (EDU-RAS) brings collaboration with Heriot-Watt University to expand the range of facilities and applications we can explore, and to fund research projects. The machine vision lab has facilities for 3D range data capture, motion capture and high-resolution and high speed video, and the high performance computing needed for graphics is well supported, including hardware partnerships with companies such as NVIDIA.

Career opportunities

While many of our graduates go on to highly successful academic careers, others find their niche in commercial research labs, putting their knowledge and skills to use in an industry setting. Several of our recent graduates have set up or joined spin-out robotics companies. Our graphics researchers have strong connections to the media and games industries, including Rockstar North.

Specific entry requirements

We expect candidates to have a degree in a computing or engineering field, with strong programming skills.

English language requirements
See page 24.

Fees and funding
For fees see page 24 and for funding information see page 26.

“I knew I wanted to do a PhD in robotics and was very happy to find that Edinburgh had a group specialising in this research, which I subsequently joined. The School of Informatics was truly inspiring and I quickly understood why it had such a renowned reputation.”

Mike Mangan, PhD Robotics graduate
Established 25 years ago, the Laboratory for Foundations of Computer Science (LFCS) continues to lead the way in the development of mathematical models, theories and tools that probe the possibilities of computation and communication. Our students benefit from being part of one of the largest and strongest groups of theoretical computer scientists in the world.

Research environment
Our research is aimed at establishing deep understanding of computation in its many forms. Using advanced mathematical principles, we create theories and software tools allowing fundamental capabilities of computation to be explored, as well as designing languages that can be used to construct safe and effective programs. Areas of interest within LFCS include verification, semantics, concurrency, process algebra, algorithms, logic and complexity.

While the results of our research can be applied to any one of a large number of diverse fields, biomedical modelling is of particular interest. Advances in experimental techniques mean that cell biologists need innovative tools and software to understand the vast quantities of data that are being generated. Other areas where our research is applied include computer security, database systems, software analysis, programming language design and performance analysis.

Culture of achievement
As a research student at LFCS, you'll have access to our highly respected academic staff community, which includes two Fellows of the Royal Society and a recent winner of a Blaise Pascal Medal. Our students regularly receive 'best paper' awards at conferences.

Career opportunities
Our graduates are in high demand for postdoctoral academic roles. In addition, the skills you'll graduate with can be applied to roles in industry, particularly finance, software development and consultancy.

Specific entry requirements
We expect applicants to have a strong background in mathematics, theories and tools that probe the possibilities of computation and communication. Our students benefit from being part of one of the largest and strongest groups of theoretical computer scientists in the world.

Research opportunities
For fees see page 24 and for funding information see page 26.

Fees and funding
For fees see page 24 and for funding information see page 26.

English language requirements
See page 24.

The University of Edinburgh
Informatics Postgraduate Opportunities 2020
www.ed.ac.uk/pg/493

LFCs: Theory & Foundations of Computer Science, Databases, Software & Systems Modelling

UKRI Centre for Doctoral Training in Biomedical Artificial Intelligence

MSc by Research followed by PhD 4 yrs FT

This programme has grown from the realisation that artificial intelligence (AI) technologies will play a central role leveraging data to transform our understanding and practice of biomedicine. Delivering such a step change will require training a new cadre of scientists operating at the intersection of computer science and biomedicine, building AI systems that are effective, ethical and empowering to scientists and users alike.

Research environment
This programme is offered in a 1+3 format comprising a first year of training through taught courses and projects, leading to the award of MSc by Research, followed by a PhD. Leading clinical, industrial and international academic partners will provide you with opportunities for hands-on application in a broad variety of contexts.

In Year 1 your taught courses will be in the areas of AI, biomedical sciences and responsible research and innovation. You will also undertake a large element of research project work including a group project, on a data modelling challenge set by a collaborating lab or industrial partner, and an individual project. Both will involve an open-ended element and, in many cases, may inform your choice of PhD topic. In the second year of the programme you will then propose and begin to pursue an interdisciplinary PhD project under the joint supervision of an AI expert and an application domain expert. During the PhD you will be embedded in local research groups, and there will be opportunities to showcase your work at local, national and international conferences and events.

English language requirements
See page 24.

Fees and funding
We anticipate a significant number of full studentships, covering tuition fees and living costs, will be available for eligible candidates. For further information, go online: www.ed.ac.uk/informatics/cdtb

For fees see page 24 and for funding information see page 26.

www.ed.ac.uk/pg/981

UKRI Centre for Doctoral Training in Natural Language Processing

PhD with Integrated Study 4 yrs FT

We have witnessed the rapid evolution of a wide range of natural language processing (NLP) systems that translate text, recognise or produce speech, answer questions, retrieve documents or facts, respond to commands, summarise articles, and simplify texts for children or non-native speakers. NLP is transforming the way humans communicate with each other and with machines. The rapid proliferation of online news, social media, and scientific articles has created an exploding demand for NLP systems that enable people to derive critical insights from massive streams of data in many languages.

Research environment
This programme is run jointly by the School of Informatics and the School of Philosophy, Psychology & Language Sciences. It will equip you with the fundamental skills for advanced research in NLP and language science, giving you foundations in: linguistics; machine learning, statistics, and algorithms; programming; work with other modalities such as vision; and design, ethics, and responsible innovation as they apply to NLP systems.

You will receive a solid foundation in the challenge of working with language in a computational setting and its relevance to critical engineering, scientific, and ethical problems in our modern world. It also offers training in the key software engineering and machine learning skills necessary to solve these problems.

The centre brings together researchers in NLP, speech linguistics, cognitive science, and design informatics. You will be supervised by world-class staff and will benefit from cutting-edge computing and experimental facilities. The centre involves more than 20 industrial partners, including Amazon, Facebook, Huawei, Microsoft, Mozilla, Reuters, Toshiba, and the BBC. Most students will undertake at least one internship during their PhD. This is an essential aspect of your training, providing team working, project management, and software engineering experience. It also exposes you to a company-focused research culture and provides valuable contacts for future job searches. Most of our industrial partners have agreed to host interns and we have partnered with the Alan Turing Institute to enhance our internship programme.

English language requirements
See page 24.

Fees and funding
We anticipate a significant number of full studentships, covering tuition fees and living costs, will be available for eligible candidates. For further information, go online: www.ed.ac.uk/informatics/cdtb

For fees see page 24 and for funding information see page 26.

www.ed.ac.uk/pg/982
About the School of Informatics

Informatics is the study of natural and engineered computational systems. It encompasses the academic disciplines of computer science, software engineering, artificial intelligence and cognitive science.

Making an impact
We lead the way in an exciting discipline that is central to a new enlightenment in scholarship and learning. Informatics is critical to the development of science, technology, culture and society. As a postgraduate student you will have the opportunity to make your own mark in the area that most interests and excites you.

Inspiring people
At the School of informatics you can join in a collaborative learning environment with our distinguished staff, many of whom are world leaders. Our academics include Fellows of the Royal Society, the Royal Society of Edinburgh and the Royal Academy of Engineering. We boast recent winners of the most prestigious awards in the field, including the Herbrand Award, the Blaise Pascal Medal and the Yangtze River Scholar award.

Exciting careers
Graduates from our programmes enjoy career success in a wide array of roles that shape our society, from developing the latest mobile technology to creating intelligent infrastructure. Many go on to work as project managers, researchers, software developers and consultants in the commercial sector (at firms such as Google, Amazon, Skyscanner or Adobe) or take up academic posts, often in Russell Group and US research universities such as MIT and Stanford. Some of our graduates have found success through start-up companies.

Facilities and resources

Our exceptional facilities have been built with the needs of innovative learning, teaching and research in mind. We provide comfortable office space and specialist research and teaching labs.

You’ll be based at the University’s Central Area, surrounded by lively venues, leisure facilities and parks and served well by public transport – not to mention the World Heritage attractions of one of the UK’s most beautiful capital cities.

Taught postgraduates will be based in our teaching accommodation in Appleton Tower. The Informatics Forum is an international research facility for computing and related areas. It houses more than 400 research staff and students, providing office, meeting and social spaces. It also contains several robotics labs, an instrumented multimedia room, and a full recording studio, among other research facilities.

Its spectacular atrium plays host to many events, from industry showcases and student hackathons to major research conferences. Nearby state-of-the-art teaching facilities include computer and teaching labs with more than 250 machines, 24-hour access to IT facilities for students, and comprehensive support provided by dedicated computing staff.

An entrepreneurial focus
As well as academic importance, we recognise the commercial potential of our research. In recent years, we’ve helped to create more spin-out companies than any other UK institution (as judged by spinoutuk.co.uk). Among our initiatives is Informatics Ventures, set up in 2008 to support globally ambitious software companies in Scotland and nurture a technology cluster to rival Boston, Pittsburgh, Kyoto and Silicon Valley.

Creative space
An exciting venture for our School is our collaboration with Edinburgh College of Art, backed by the Scottish Funding Council. The Centre for Design Informatics allows the integration of product design with ideas from informatics. Designers work alongside informatics entrepreneurs to help build new products and services, including the next generation of social media tools.

Collections of the University
The University of Edinburgh has one of the world’s great collections, which has been growing ever since its foundation in 1583. Our collections include rare books, archives and manuscripts, art, historical musical instruments, and a wide range of museum objects from geological specimens to anatomical models. If laid out end to end, we would have almost 60 kilometres of shelving and storage space devoted to our heritage material, from 1st century Greek papyrus fragments to new works of sculpture. This is curated by specialist staff across 45 sites and used for our teaching and research and by the wider public community.

The Centre for Research Collections in the Main Library is the hub for all our collections, where specialist curators make them available for study, research and pleasure. Postgraduate students are welcome to study original objects and have made many important research discoveries while working on the archives. You will find an incredible range of material in our collections that is available nowhere else in the world.

The Informatics Forum
Community

As a student at the School of Informatics, you’ll be studying with the UK’s largest group of informatics researchers, comprising almost 500 students and academic staff.

Social networking
Informatics students enjoy a lively social life, and can take part in many student-organised activities. The University’s computer society, CompSoC, and the School’s AI society EdIntelligence, both organise events ranging from games to ice skating, and there are regular sports tournaments and tech meet-ups. There is also Hoppers, a social group for women in technology.

The Informatics Forum is a vibrant meeting point for all sorts of groups, from the formal to the very informal – you can even play table tennis in the Forum itself. There are also numerous online resources and meeting points, from the School’s Facebook page to wikis and virtual cafes.

Sharing research
In addition to formal teaching, each research institute within the School regularly schedules seminars for all staff and students, where you can hear about cutting-edge research as it unfolds. Research students will also find regular opportunities to present their work in the School, and students, where you can hear about cutting-edge research as it unfolds. Since 2013 the School has held an Athena SWAN Silver Award, which recognises Informatics as a supportive environment for women in the area of Science, Technology, Engineering, Medicine and Mathematics (STEMM).

Sharing research
In addition to formal teaching, each research institute within the School regularly schedules seminars for all staff and students, where you can hear about cutting-edge research as it unfolds. Research students will also find regular opportunities to present their work in the School, and students, where you can hear about cutting-edge research as it unfolds. Since 2013 the School has held an Athena SWAN Silver Award, which recognises Informatics as a supportive environment for women in the area of Science, Technology, Engineering, Medicine and Mathematics (STEMM).

Support
The School’s Student Services team offers a first point of contact to all our taught and research students for help and information to support all aspects of your student life, from admissions and funding to graduations and career opportunities. In addition, the University’s new £8 million wellbeing centre will open adjacent to the Informatics Forum later this year while the Edinburgh University Students’ Association provides free advice and support through its drop-in centre The Advice Place.

Employability and graduate attributes
Computers continue to play a vital role in nearly every aspect of everyday living and in a diverse range of sectors – from the entertainment industry to the environment. Some of the most dynamic and lucrative opportunities are available to those who are skilled in computing, software and information systems.

All our postgraduate students have access to an excellent range of services to help you make the most of your time with us, whether you’re looking to enhance your career, pursue research or start your own business.

Start-up assistance
The School of Informatics is particularly supportive of commercialisation and we have a strong track record in developing spin out companies. For those who are entrepreneurially minded, we provide training and mentoring and host special events to help our students and staff attract venture capital funding for their start-ups. Informatics Ventures is a dedicated knowledge exchange programme which aims to foster innovation and entrepreneurship through regular workshops, seminars and other events. For more information see: www.informatics.ventures

Institute for Academic Development
All postgraduate students can benefit from our Institute for Academic Development (IAD), which provides information, events and courses to help you develop the skills you will need throughout your studies and in the future. IAD also offers the perfect opportunity to meet and network with other postgraduates from across the University.

Further information is available online: www.ed.ac.uk/iad/postgraduates

For taught postgraduates, IAD provides a popular study-related and transferable skills support programme. It is designed to help you settle into postgraduate life, succeed during your studies and move confidently to the next stage of your career. We offer on-campus and online workshops and one-to-one study skills consultations, plus online advice and learning materials. Workshops and learning resources cover key topics tailored to different academic stages, including: pre-arrival sessions; getting started with your studies; critical reading, writing and thinking; managing your exams; and planning for and writing up your dissertation.

IAD also provides a comprehensive programme of transferable-skills training, resources and support for research students completing a doctorate. The workshop programme is designed to help you successfully prepare for the various milestones of your PhD, from getting started with your research, to writing up and preparing for the viva, as well as developing personal and professional skills that can be transferred to your future employment. Workshops cover topics such as writing skills, reference management tools, statistics, preparing for conferences, delivering presentations, time and project management, and personal development.

IAD also offers online resources and planning tools to help get your research started, as well as support for tutoring and demonstrating, and public engagement and communication.

Careers Service
Our Careers Service plays an essential part in your wider student experience at the University, offering a range of tailored careers and personal development guidance and support. We support you to recognise the wealth of possibilities ahead, while at university and after graduation, helping you explore new avenues, tap into your talents and build your employability with confidence and enthusiasm.

We provide high-quality, tailored support to all students. From exploring career options to making decisions, from CV writing to interview practice, from Employ.ed internships to graduate posts and from careers fairs to postgraduate documents, we will help you prepare for the future.

We sustain and continually develop links with employers from all industries and employment sectors, from the world’s top recruiters to small enterprises based here in Edinburgh. Our employer team provides a programme of opportunities for you to meet employers on campus and virtually, and advertises a wide range of part-time and graduate jobs.

More information: www.ed.ac.uk/careers/postgrad

Platform One
Platform One is an online meeting place where members of the University community can connect and contribute. It provides social networking opportunities and a range of workshops, bootcamps, competitions and networking events. Successful recent clients include David Boteas, creator of the Dehumaniser sound effects software used by Hollywood movies and blockbuster video games; and Enactus Edinburgh, a team of student social entrepreneurs who represented the UK in the Enactus World Cup with their local and international projects.

More information: www.ed.ac.uk/platform-one

Backing bright ideas
Edinburgh Innovations, the University’s commercialisation service, offers free support to student entrepreneurs including one-to-one business advice and a range of workshops, bootcamps, competitions and networking events. Successful recent clients include David Hunter, inventor of the performance-tracking golf watch Shot Scope; Orléas Boteas, creator of the Dehumaniser sound effects software used by Hollywood movies and blockbuster video games; and Enactus Edinburgh, a team of student social entrepreneurs who represented the UK in the Enactus World Cup with their local and international projects.
We have an online application process for all postgraduate programmes. It's a straightforward system with full instructions, including details of any supporting documentation you need to submit.

Applications and fees

When applying, you will set up an account, which lets you save your application and continue at another time. Full guidance on our application system is available at: www.ed.ac.uk/postgraduate/applying

General requirements

Our usual entrance requirement for postgraduate study is a UK 2:1 honours degree, or its international equivalent ([www.ed.ac.uk/international/graduate- entry](http://www.ed.ac.uk/international/graduate-entry)). This will typically be in an area of informatics, such as artificial intelligence, cognitive science or computer science. You may also be considered if your degree is in one of the following areas: engineering, linguistics, mathematics, philosophy, physics or psychology. You will need to have experience in computer programming.

You will need to meet the University's language requirements (see below).

Entry requirements for individual programmes can vary, so check the details for the specific programme you wish to apply for online: www.ed.ac.uk/postgraduate/degrees

Applicants to our taught postgraduate programmes who receive an offer of admission may be asked to pay a tuition fee deposit of £1,500 within 28 days to secure their place on the programme. Applicants required to pay will receive full details with their offer of admission (if there is no information on your offer about a deposit, then you are not required to pay).

References

For applications to taught programmes, the normal requirement is one reference, although an additional reference may be requested in individual cases. For applications to research programmes, two references are required. You should check the entry online for exact requirements for your intended programme of study.

For general guidance on references, visit: www.ed.ac.uk/postgraduate/degrees

Deadlines

Taught MSc programmes

Some programmes have application deadlines. Please check the individual programme entry online for details. For all other programmes, you are encouraged to apply no later than one month prior to entry to ensure there is sufficient time to process your application. However, earlier application is recommended, particularly where there is a high demand for places or when a visa will be required. Should you wish to submit a late application, please contact us for guidance. If you are applying for funding, in most cases you will need an offer to study with us before you can make your funding application.

Research programmes

Our admissions process for research students is organised into two rounds, which are aligned with the timing of the main funding decisions. For full consideration for all PhD scholarships, including those available to international and EU students, you should apply for admission by mid-December. The second deadline is the end of March, connected to funding decisions mostly affecting UK students. It is possible for admissions decisions to be made at other times of the year, especially if you have your own or external sources of funding.

English language requirements

You must demonstrate a level of English language competency at a level that will enable you to succeed in your studies, regardless of your nationality or country of residence. We accept the following English language qualifications at the grades specified:

Design Informatics

Advanced Design Informatics

- IELTS Academic: total 7.0 (at least 6.0 in each module).
- TOEFL-iBT: total 100 (at least 20 in each module).
- PTE Academic: total 67 (at least 56 in each of the Communicative Skills sections).
- CAE and CPE: total 185 (at least 169 in each module).
- Trinity ISE: ISE III (with a pass in all four components).

For all other programmes:

- IELTS Academic: total 6.5 (at least 6.0 in each module).
- TOEFL-iBT: total 92 (at least 20 in each module).
- PTE Academic: total 61 (at least 56 in each of the Communicative Skills sections).
- CAE and CPE: total 176 (at least 169 in each module).
- Trinity ISE: ISE II (with distinctions in all four components).

Please note:

- English language requirements can be affected by government policy to please ensure you visit our degree finder to check the latest requirements for your programme: www.ed.ac.uk/postgraduate/degrees
- Your English language qualification must be no more than three and a half years old at the beginning of your programme, unless you are using IELTS, TOEFL, PTE Academic or Trinity ISE, in which case it must be no more than two years old.
- We also accept recent degree level study that was taught and assessed in English in a majority English-speaking country (as defined by UK Visas & Immigration), or at a university in a non-majority English-speaking country which has specifically been approved by the University of Edinburgh's Admissions Qualifications Group. A list of approved universities is published on our website. If you are not a national of a majority English speaking country, then your degree must be no more than three and a half years old at the beginning of your programme of study.
- We do not require you to take an English language test before you apply.

Abbreviations: IELTS – International English Language Testing System; TOEFL-iBT – Test of English as a Foreign Language Internet-based Test; PTE – Pearson Test of English; CPE – Certificate of Proficiency in English; CAE – Certificate in Advanced English; Trinity ISE – Integrated Skills in English.

Tuition fees

The following table provides an overview of indicative fee levels for programmes commencing in 2020.

Please note:

- International students starting full-time taught programmes of study lasting more than one year will be charged a fixed annual fee.
- All other students on full-time and part-time programmes of study lasting more than one year should be aware that annual tuition fees are subject to revision and are typically increased by approximately five per cent per annum. This annual increase should be taken into account when you are applying for a programme.
- In addition to tuition fees, your programme may be subject to an application fee and additional costs for programme costs may apply. Please check the latest programme information online.

Asylum seeker tuition fee status and scholarship information

Information for applicants seeking asylum within the United Kingdom, who wish to commence a programme of study at the University in 2020, is available online. This includes our tuition fee rates and scholarship opportunities: www.ed.ac.uk/student-funding/asylum.

Tuition fees for EU students

EU students enrolling in the 2020/21 academic year will be admitted as Scottish/EU fee status students. You will be eligible for the same tuition support as Scottish domiciled students from the Student Awards Agency Scotland (SAAS).

For UK/EU students

<table>
<thead>
<tr>
<th>Programme</th>
<th>Annual fee</th>
<th>Graduates admitted</th>
<th>2020/21 fees of full-time progressive rate</th>
</tr>
</thead>
<tbody>
<tr>
<td>Advanced Design Informatics 1-year FT</td>
<td>£12,150</td>
<td></td>
<td>£12,150</td>
</tr>
<tr>
<td>High Performance Computing</td>
<td>£28,150</td>
<td></td>
<td>£28,150</td>
</tr>
<tr>
<td>High Performance Computing with Data Science</td>
<td>£13,000</td>
<td></td>
<td>£13,000</td>
</tr>
<tr>
<td>All other taught programmes 1-year FT</td>
<td>£14,600</td>
<td></td>
<td>£14,600</td>
</tr>
<tr>
<td>All other taught programmes 2-years FT</td>
<td>£17,500</td>
<td></td>
<td>£17,500</td>
</tr>
<tr>
<td>All other taught programmes 3-years FT</td>
<td>£16,470</td>
<td></td>
<td>£16,470</td>
</tr>
<tr>
<td>All other MSc by Research 1-year FT</td>
<td>£8,750</td>
<td></td>
<td>£8,750</td>
</tr>
<tr>
<td>All other MSc by Research 2-years FT</td>
<td>£14,375</td>
<td></td>
<td>£14,375</td>
</tr>
<tr>
<td>MPhil/PhD programmes FT</td>
<td>£4,327</td>
<td></td>
<td>£4,327</td>
</tr>
<tr>
<td>MPhil/PhD programmes PT</td>
<td>£2,764</td>
<td></td>
<td>£2,764</td>
</tr>
</tbody>
</table>

* Figure shown is the 2019/20 fee level

All other fees quoted are indicative of 2020/21 fee levels, because these figures are indicative, it is important you check online before you apply and check the up-to-date fee level that will apply to your specific programme: www.ed.ac.uk/student-funding/tuition-fees/postgraduate
A large number of scholarships, loans and other funding schemes are available for your postgraduate studies. It is only possible to show a small selection in print. To see the full range, please visit: www.ed.ac.uk/student-funding/postgraduate

Scholarships at the University of Edinburgh

- Edinburgh Global Research Scholarships
 These scholarships are designed to attract high-quality international research students to the University: www.ed.ac.uk/student-funding/global-research
- UKRI/EPSRC Centre for Doctoral Training Studentships
 Combined MSc/PhD programmes in our UKRI/EPSRC Centres for Doctoral Training offer a number of fully-funded places for eligible students: www.ed.ac.uk/informatics/research-scholarships
- Google European Doctoral Fellowship
 Google runs an international competition for these scholarships. Successful applicants receive full tuition fees, a stipend and research expenses: ai.google/research/outreach
- Microsoft Research European PhD Scholarships
 Microsoft Research runs an international competition for these scholarships, which are available to students from Europe, the Middle East and Africa: research.microsoft.com/en-us/collaboration/global/apply-europe
- Principal’s Career Development PhD Scholarships
 These provide a valuable opportunity for PhD students to undertake training and skills development and offer opportunities in areas such as teaching, public engagement, entrepreneurship, data science, and research. Each award covers the UK tuition fee and a stipend: www.ed.ac.uk/student-funding/development
- School of Informatics Scholarships
 A number of scholarships available each year to new postgraduate researchers: www.ed.ac.uk/student-funding/informatics/phd-funding

Research council awards

Research councils offer awards to masters and PhD students in most of the Schools within the University of Edinburgh. All scholarship applications to the research councils must be made through the University, through your School or College office. Awards can be made for both taught and research programmes.

Normally only those UK/EU students who have been resident in the UK for the preceding three years are eligible for a full award. For some awards, candidates who are EU nationals and are resident in the UK may be eligible for a fees-only award. The UK Government has confirmed that EU postgraduate research students commencing their studies in 2020/21 will retain their fee status and eligibility for research council support for the duration of their programme: www.ed.ac.uk/student-funding/research-councils

The University also offers a number of scholarships in partnership with the following overseas government agencies:

- Mexico
 Banco de Mexico and the Banco de Mexico’s FIDERH trust (FIDERH): www.fiderh.org.mx
 Fundacion Mexicana para la Educacion, la Tecnologia y la Ciencia (FUNEED): www.funeedm.org
- Pakistan
- US

Other sources of funding

The following are examples of the many scholarships and support schemes available to students from particular countries who meet certain eligibility criteria.

- Chevening Scholarships
 A number of partial and full funding scholarships are available to one year masters students: www.chevening.org
- Commonwealth Scholarships
 Scholarships available to students who are resident in any Commonwealth country, other than the UK: www.dfid.gov.uk/cscuk
- Marshall Scholarships (USA)
 Scholarships available to outstanding US students wishing to study at any UK university for at least two years: www.marshallscholarship.org

Loans available for study at the University of Edinburgh

The University of Edinburgh is participating in the following loans programmes, meaning we certify your student status and can help with the application process.

- The Canada Student Loans Program
 The University is eligible to certify Canadian student loan applications: www.ed.ac.uk/student-funding/canadian-loans
- Erasmus+
 The Erasmus+ Master Loan helps masters students with their living and tuition costs when studying in an Erasmus+ country other than where they live or where they took their first degree. For more information: erasmusplus.org/master-loan
- Postgraduate Doctoral Loans England
 Student Finance England offers postgraduate loans for doctoral study, payable to eligible students, divided equally across each year of the doctoral programme: www.gov.uk/postgraduate-loan
- Postgraduate Doctoral Loans Wales
 Student Finance Wales offers postgraduate loans for doctoral study, payable to eligible students, divided equally across each year of the doctoral programme: www.studentfinancewales.co.uk/postgraduate-students/postgraduate-doctoral-loan
- Postgraduate Loans (PGL) Northern Ireland
 Student Finance Northern Ireland offers postgraduate loans for taught and research programmes, at certificate, diploma, and masters level, which will be paid directly to the University: www.studentfinanceni.co.uk
- Postgraduate Loans (SAAS) Scotland and EU
 The Student Awards Agency Scotland offers eligible students tuition fee loans for taught and research programmes at diploma and masters level, which will be paid directly to the University. Full-time students resident in Scotland can also apply for a non-income assessed living cost loan: www.sas.gov.uk
- Postgraduate Master’s Finance Wales
 Student Finance Wales offers eligible postgraduate students postgraduate finance for taught and research masters programmes: www.studentfinancewales.co.uk
- US Student Loans
 The University is eligible to certify loan applications for US loan students. Full details on eligibility and how to apply can be found online: www.ed.ac.uk/student-funding/us-loans

“The Scottish Government’s initiative to attract international students through the Saltire Scholarship Scheme, as well as the University’s support for international students, has helped provide me with an opportunity that I would have never conceived of prior to starting my studies at Edinburgh.”

Robert Starr, MSc High Performance Computing, Scotland’s Saltire Scholarship
Informatics teaching, learning and research takes place in two buildings based at the University’s Central Area, a stone’s throw from city attractions and University amenities, such as the Main Library and the Centre for Sport and Exercise.

Contact us
Visit: www.ed.ac.uk/informatics/postgraduate
For more information about taught MSc programmes, please contact the Informatics Teaching Organisation:
Tel +44 (0)131 651 3266
Email ito@inf.ed.ac.uk

For more information about the application and admissions process for taught MSc programmes, contact:
College of Science & Engineering Recruitment and Admissions team
Tel: +44 (0)131 650 5737
www.ed.ac.uk/science-engineering/contact/undergraduate-or-postgraduate-taught-enquiries

For more information about our research programmes, including PhDs, please contact our Graduate School:
Tel +44 (0)131 650 3091
Email phd-admissions@inf.ed.ac.uk
To discuss your research proposal, you’ll find details of potential supervisors at:
www.ed.ac.uk/informatics/directory

Visit us
The University’s Postgraduate Open Day is your opportunity to come and meet current staff and students. Our next campus-based Open Day takes place on 13 November 2019. For more information, visit: www.ed.ac.uk/postgraduate-open-day

Visit our School and explore our facilities online at: www.ed.ac.uk/informatics/images-videos

Our visits to you
If you are unable to visit the University, we attend events throughout the year so you can meet and speak to us in person.

UK and Europe:
www.ed.ac.uk/postgraduate/events

International:
www.ed.ac.uk/international/our-visits-overseas

Chat online
We offer all postgraduate students online information sessions. To find out more and see when the next session will be: www.ed.ac.uk/postgraduateonline-events

For international students, Edinburgh Global also offers regular online chats. To find out more: www.ed.ac.uk/international/chat-to-us-online
On 23 June 2016 the UK electorate voted in a national referendum to leave the European Union. EU postgraduate taught students enrolling in the 2020/21 academic year will be admitted as Scottish/EU fee status students and eligible for the same tuition support as Scottish domiciled students for the duration of their studies. This will still be the case in the event of a Brexit no deal scenario. For the latest information for students and applicants from the EU, please visit our website: www.ed.ac.uk/news/jeu

The University’s standard terms and conditions will form an essential part of any contract between the University of Edinburgh and any student offered a place here. Our full terms and conditions are available online: www.ed.ac.uk/student-recruitment/terms-conditions

© The University of Edinburgh 2019. No part of this publication may be reproduced without written permission of the University. The University of Edinburgh is a charitable body registered in Scotland, with registration number SCO05336.