Postgraduate Opportunities 2020

Chemistry

Influencing the world since 1583
“Edinburgh isn't so much a city, more a way of life … I doubt I'll ever tire of exploring Edinburgh, on foot or in print.”

Ian Rankin
Best-selling author and alumnus
For more than 400 years the University of Edinburgh has been changing the world. Our staff and students have explored space, won Nobel Prizes and revolutionised surgery. They’ve published era-defining books, run the country, made life-saving breakthroughs and laid the foundations to solve the mysteries of the universe.

Our distinguished alumni include NASA astronaut Piers Sellers, former MI5 Director-General Dame Stella Rimington, Olympians Sir Chris Hoy and Dame Katherine Grainger, and historical greats such as philosopher David Hume, suffragist Chrystal Macmillan, who founded the Women’s International League for Peace and Freedom, and physicist and mathematician James Clerk Maxwell.

International collaboration
An internationally renowned centre for academic excellence, we forge world-class collaborations with partners such as the California Institute of Technology (Caltech), Stanford University, the University of Melbourne, Peking University, the University of Delhi and the University of KwaZulu-Natal. As a member of the League of European Research Universities and the Coimbra Group, we link up with leading institutions across Europe.

Linking research and commerce
We were one of the first UK universities to develop commercial links with industry, government and the professions. Edinburgh Innovations promotes and commercialises our research excellence and can assist you in taking the first step to market, through collaborative research, licensing technology or consultancy.

Enhancing your career
We are committed to embedding employability in your University experience and have an impressive track record for graduate employment. From volunteering schemes to our sector-leading careers service, we provide you with opportunities to develop your skills, knowledge and experience, giving you an edge in the competitive job market.

TOP 50
We’re consistently ranked one of the top 50 universities in the world. We’re 20th in the 2020 QS World University Rankings.

4TH
We’re ranked fourth in the UK for research power, based on the 2014 Research Excellence Framework.*

83%
The majority of our research – 83 per cent – is considered world leading or internationally excellent.*

TOP 100
We are ranked in the top 10 in the UK and in the top 100 in the world for the employability of our graduates.†

£403m
In 2017/18 we won £403 million in competitive research grants.

19
There are 19 Nobel Prize winners who are alumni of the University or have been members of academic staff here.

22ND
We’re ranked 22nd in the world’s most international universities.‡ Since 2010, we have taught students from more than 160 countries.

* Times Higher Education, Overall Ranking of Institutions
† Times Higher Education, Global Employability University Ranking 2018
‡ Times Higher Education: The World’s Most International Universities 2019

Influencing the world since 1583
Taught masters programmes

Our taught Master of Science (MSc) programmes last 12 months, consisting of two semesters of taught courses followed by an individual supervised research project and dissertation.

Materials Chemistry

MSC 1 yr FT

Programme description
Materials chemistry has emerged as an important sub-discipline within chemistry. It cuts across the traditional organic/inorganic/physical boundaries of chemistry and overlaps many disciplines, from engineering to the biosciences.

Materials chemists now have a leading role in areas such as microelectronics, polymer science, catalysis and nanotechnology. They also make an important contribution to areas of more traditional chemistry such as the pharmaceutical sector, where understanding the physical properties of intermediates and products is now recognised as essential in optimising the synthesis and properties of pharmacologically active ingredients in medicines.

COURSES PREVIOUSLY OFFERED INCLUDE:
- Advanced lecture courses such as: Materials Chemistry; Chemistry of Functional Materials; Advanced Physical Chemistry; Advanced Inorganic Chemistry. These are studied concurrently with a predominantly practical-based course that develops skills in research methods. You will then proceed to a period of full-time research project work leading to the submission of your masters dissertation.

Programme structure
Lectures are given by leading researchers in the area of materials chemistry. The lecture courses are supported by tutorial sessions and assessed by examination in April/May.

The practical course in research methods includes an exciting problem-solving exercise where you learn important skills such as communicating science, dealing with intellectual property and grant application writing, and undertake a literature survey and written report, defining the scope of the subsequent individual research project. The programme also includes a series of writing skills workshops.

Career opportunities
This programme has been designed to help you take a leading role in areas such as microelectronics, polymer science, catalysis and nanotechnology, or the pharmaceutical sector. Alternatively, the masters is a precursor to a PhD.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), in chemistry or a closely related discipline with a strong chemistry component. We may also consider a UK 2:2 honours degree, or its international equivalent, with relevant work experience and supportive references.

English language requirements
See page 12.

Fees and funding
For fees see page 12 and for funding information see page 14.

Programme Secretary Claire Dickson
Tel +44 (0)131 651 7257
Email chemistry.pgt@ed.ac.uk

Medicinal & Biological Chemistry

MSC 1 yr FT

Programme description
Medicinal and biological chemistry requires a thorough understanding of molecules, their structures, properties and synthesis, and a chemical understanding of the nature of biological structures, from macromolecules to cells, the design of pharmaceutical materials in the laboratory and their function in clinical settings.

The knowledge and skills acquired on this programme will leave you well equipped to compete for positions related to drug discovery in chemical, pharmaceutical or biotechnological companies.

COURSES PREVIOUSLY OFFERED INCLUDE:
- Advanced lecture courses: In: Advanced Organic Chemistry; Biomacromolecules; Chemical Medicine; Biophysical Chemistry. These are studied concurrently with a predominantly practical-based course that develops skills in research methods. You will then proceed to a period of full-time research project work, leading to the submission of your masters dissertation.

Programme structure
Lectures are given by leading researchers in the area of medicinal and biological chemistry. The lecture courses are supported by tutorial sessions and assessed by examination in April/May.

The practical course in research methods includes an exciting problem-solving exercise where you learn important skills such as communicating science, dealing with intellectual property and grant application writing, and undertake a literature survey and written report, defining the scope of the subsequent individual research project. The programme also includes a series of writing skills workshops.

Career opportunities
You will be well suited to take up roles in the chemical and pharmaceutical industries, either in research and development or sales and marketing.

You will gain valuable work experience in a real-life research environment. Alternatively, a masters is a precursor to a PhD degree.

Our programmes teach students the valuable skills they need to move into other areas outside chemistry. Careers in IT, management or finance are possibilities after completing your programme.

Entry requirements
A UK 2:1 honours degree, or its international equivalent (www.ed.ac.uk/international/graduate-entry), in chemistry or a closely related discipline with a strong chemistry component. We may also consider a UK 2:2 honours degree, or its international equivalent, with relevant work experience and supportive references.

English language requirements
See page 12.

Fees and funding
For fees see page 12 and for funding information see page 14.

Programme Secretary Claire Dickson
Tel +44 (0)131 651 7257
Email chemistry.pgt@ed.ac.uk
Research opportunities

There are opportunities to pursue research through the following routes:

- **PhD**: three years (minimum) full-time (six years part-time for UK/EU students only)
- **MSc by Research**: one year full-time

PhD

As a PhD candidate you pursue a research project under continuous guidance, resulting in a thesis that makes an original contribution to knowledge. You will gain specialist background knowledge for your intended research, and develop the skills to research in that field. The majority of our recent graduates have gone into research scientist roles in academia or industry. Others found industry employment, with companies such as Johnson & Johnson, Charwood Molecular and Sociable Pharma, in roles such as process development chemist, clinical scientist, technical analyst and project manager.

Centres for Doctoral Training

The School is both leading, and involved in, many Centres for Doctoral Training funded by UK research councils, industry and the UK government. Applications for these PhD studentships often require the support of a PhD supervisor who is partnered with a particular training centre. Please note that in the majority of cases, eligibility is restricted to UK or EU nationals, and annual application deadlines apply.

- **SOIF**: Soft Matter and Functional Interfaces: www.dur.ac.uk/soft.matter/soifcdt
- **NERC E4**: www.ed.ac.uk/e4-dtp
- **EastBIO**: www.eastscotbiodtp.ac.uk

MSc by Research

An MSc by Research, which takes one year, is based on a research project tailored to your interests. The project is a shorter alternative to a PhD and also a precursor to the PhD programme, with an MSc project potentially expanding into doctorate work as it evolves.

Research areas

- **The chemistry/biology interface**
 This is a broad area, with particular strengths in protein structure and function, mechanistic enzymology, proteomics, peptide and protein synthesis, protein folding, recombinant and synthetic DNA methodology, biologically targeted synthesis and the application of advanced techniques to biological systems. This includes mass spectrometry, advanced spectroscopy and microscopy, as applied to proteins, enzymes, DNA, membranes and biosensors.

- **Experimental and theoretical physical chemistry**
 This is the fundamental study of molecular properties and processes. Areas of expertise include probing molecular structure in the gas phase, clusters and nanoparticles, the development and application of physicochemical techniques such as mass spectrometry to molecular systems, and the EaStChem surface science group, whose members study complex molecules on surfaces, probing the structure-property relationships employed in heterogeneous catalysis. World-class computational facilities including teraflop capability are available through EaStChem Research Computing.

- **Synthesis and catalysis**
 This research area encompasses the synthesis and characterisation of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, coordination chemistry, ligand design and supramolecular chemistry, asymmetric catalysis, heterocyclic chemistry and the development of synthetic methods and strategies leading to the synthesis of biologically important molecules (including drug discovery). The development of innovative synthetic and characterisation methodologies (particularly in structural chemistry) is a key feature, and we specialise in structural chemistry at extremely high pressures.

Materials chemistry

The EaStChem materials group is one of the largest in the UK. Areas of strength include: sustainable polymer synthesis and catalysis; functional (for example, magnetic, superconducting and electronic) materials; strongly correlated electronic materials, battery and fuel cell materials and devices; porous solids; fundamental and applied electrochemistry polymer microarray technologies; and technique development for materials and nanomaterials analysis.

Entry requirements

In general, any research area in the School of Chemistry will require you to have a degree in a related field. We may consider your application if your background is not directly related to chemistry; contact your potential supervisor for advice. Please check the specific entry requirements for your programme online before applying.

English language requirements

See page 12.

Fees and funding

For fees see page 12 and for funding information see page 14.

Case study: Edinburgh’s research with impact

Protecting the population from air pollution

Up to 30 per cent of the EU urban population is estimated to be exposed to pollutant levels greater than the EU specified limit. Air pollution is the environmental factor with the greatest impact on human health in Europe. Professor Matthew Heal of the EaStChem School of Chemistry has been leading a programme of pollution research on the three most important air pollutants – particulate matter, ozone and nitrogen dioxide – for 20 years, contributing valuable findings that are changing the way the world protects itself from the effects of pollution.

Project background

Exposure to particulate matter alone is estimated to reduce average life expectancy in the UK by six months, with estimated costs of £3bn–20bn a year. The group led by Professor Heal recognised the importance of detecting particulate matter and other airborne pollutants, and set about analysing current prescribed air quality assessment methods. As well as finding that these systems are subject to inaccuracies, they researched and defined optimal methods for new, more accurate and reliable measurements.

Professor Heal’s group research also showed how atmospheric models can simulate current ozone concentrations with high spatial resolution and predict future concentrations, as well as regional hospital admissions and deaths resulting from a range of future emissions and climate change scenarios.

Project results

The findings from Professor Heal and his team have been groundbreaking and have contributed evidence for the formulation of government policies, informing UK national guidance and policy-evidence documents for the Department for Environment, Food and Rural Affairs (Defra), the Health Protection Agency, and the UK’s environment agencies.

The more accurate and reliable methods originating from the Edinburgh team are now incorporated into protocols applied to measurements of nitrogen dioxide for statutory air quality assessments in all urban areas in the UK.

See more online: www.ed.ac.uk/research/impact
The teaching of chemistry at Edinburgh has a long and distinguished history – 2013 marked our 300th anniversary of the establishment of the ‘Chair of Physick and Chemistry’.

Today we continue that proud tradition as a leader in the field. In collaboration with the University of St Andrews, we have formed EaStCHEM, one of the largest and most successfully funded chemistry research organisations in the UK. As EaStCHEM, our submission to the Research Excellence Framework (REF) 2014 saw 95 per cent of our research rated either 4* world leading or 3* internationally excellent on the overall quality profile.

Our membership of ScotCHEM takes this collaborative spirit even further, providing links with all the major schools of chemistry in Scottish universities. We offer you a large, internationally-recognised research community, and the benefits of the latest facilities, well-published and award-winning academic staff, a lively graduate school environment and a broad range of study opportunities.

Nobel Laureate

Our notable alumni include Professor Sir J Fraser Stoddart who was jointly awarded the Nobel Prize in Chemistry in 2016 for his work on the design and synthesis of molecular machines, Professor Stoddart graduated from the University with a BSc in 1964 and later with a PhD. He continues to inspire current students with a BSc in 1964 and later with a PhD.

Supporting business opportunities

As well as pursuing research for the purpose of academic advancement, we are ever alert to the commercial possibilities of our findings, and we work with business to identify and develop these opportunities. Should your research show potential for industrial applications, we have the tools available to support its development and commercial success.

About the School of Chemistry

Facilities and resources

We offer on-site services ranging from full-time glassblowing and electronics workshops to video conferencing and computer research support.

We have close links with the Edinburgh Parallel Computing Centre, whose Europe-leading supercomputing capabilities put us at the forefront of computational chemistry.

Make it, test it

You will have access to facilities for the synthesis and characterisation at ambient and extreme conditions of organic and inorganic compounds, including those with application in homogeneous catalysis, nanotechnology, supramolecular chemistry, drug discovery and ligand design. The development of innovative synthetic and characterisation methodologies is a key feature of our work, using the latest techniques and technology.

A 1,000-tonne pressure chamber enables the synthesis of materials at high pressures and temperatures. Fluorescence spectroscopy and microscopy instruments are available within our Collaborative Optical Spectroscopy Micromanipulation & Imaging Centre (COSMIC).

We have excellent facilities for creating and analysing biomolecules, including advanced mass spectrometry, NMR stopped-flow spectrometers, electron paramagnetic resonance spectroscopy, high-performance liquid chromatography, fast protein liquid chromatography and atomic absorption spectroscopy.

High-specification hardware

For NMR in the solution and solid state, we have 10 spectrometers at field strengths from 200 MHz to 800 MHz; our mass spectrometry resource has a 12T FT-ICR mass spectrometer for routine mass analysis, and we have expertise in mass spectrometry imaging and ion mobility-mass spectrometry. New combinatorial chemistry laboratories are available, equipped with a modern fermentation unit.

Collections of the University

The University of Edinburgh has one of the world’s great collections, which has been growing ever since its foundation in 1583. Our collections include rare books, archives, manuscripts, art, historical musical instruments and a wide range of museum objects from geological specimens to anatomical models. If laid out end to end, we would have almost 60 kilometres of shelving and storage space devoted to our heritage material, from 1st century Cyprian papyrus fragments to new works of sculpture. This is curated by specialist staff across 45 sites and used for our teaching and research and by the wider public community.

The Centre for Research Collections in the Main Library is the hub for all our collections, where specialist curators make them available for study, research and pleasure. Postgraduate students are welcome to study original objects and have made many important research discoveries while working on the archives. You will find an incredible range of material in our collections that is available nowhere else in the world.
Community

As part of our Graduate School, you’ll be working in a large and dynamic research environment – one of the largest in the UK.

Located on the King’s Buildings campus (see page 16) in the south of Edinburgh, we form part of a thriving hub of science teaching and research, with all the amenities you’d expect from a large campus along with easy access to the city centre.

Collaboration and interaction
Our is an extremely interdisciplinary area, and many of our researchers interact with those in biology, chemistry, materials science, geosciences, engineering and other disciplines. With world-leading and internationally-significant research being undertaken in all these areas, you’ll find having collaborative access to this calibre of expertise is a valuable asset to your studies.

We recognise the value of interaction with the wider world of chemistry, and will encourage you to broaden your perspective by attending and presenting at international conferences. Teaching can also open the way to new approaches to research; you’ll have the chance to find this out for yourself if you become involved in tutoring undergraduates.

Chemical bonds
The School organises regular research talks and visiting speaker symposia, as well as lecture courses on specialised techniques and safety.

Researchers can take part in the annual residential conference at Firle Point, the University’s outdoor pursuits centre on the shores of Loch Tay.

You’ll be invited to join our chemistry society, ChemSoc, the oldest society of its kind in the world, established in 1785. A very active group for both students and teaching staff, ChemSoc organises a full and varied programme of lectures, and social and sporting events.

Employability and graduate attributes

With your postgraduate qualification you will be perfectly placed for a successful career in the chemical or pharmaceutical industries, such as in research and development or sales and marketing, or to continue in academia. At Edinburgh you will also learn valuable skills that will open doors in areas outside chemistry.

Many of the skills that will ensure success in your postgraduate studies at the School of Chemistry will benefit your personal and professional development regardless of the direction your career may take, be it into finance, management, IT, patent law, government or other sectors.

The skills you will learn include:
• how to work independently to identify the aims of a project from the outset;
• teamwork and high-level networking skills;
• how to argue a case and offer constructive criticism;
• analytical and problem-solving skills;
• effective communication of complex information, including presentation skills.

Institute for Academic Development
All postgraduate students can benefit from our Institute for Academic Development (IAD), which provides information, events and courses to help develop the skills you will need throughout your studies and in the future. IAD events also offer the perfect opportunity to meet and network with other postgraduates from across the University.

Further information is available online: www.ed.ac.uk/iad/postgraduates

For taught postgraduates, IAD provides a popular study-related and transferable skills support programme. It is designed to help you settle into postgraduate life, succeed during your studies and move confidently to the next stage of your career. We offer on-campus and online workshops and one-to-one study skills consultations, plus online advice and learning materials. Workshops and learning resources cover key topics tailored to different academic stages, including: pre-arrival sessions; getting started with your studies; critical reading, writing and thinking; managing your exams; and planning for and writing up your dissertation. IAD also provides a comprehensive programme of transferable skills training, resources and support for researchers completing a doctorate. The workshop programme is designed to help you successfully prepare for the various milestones of your PhD, from getting started with your research, to writing up and preparing for the viva, as well as developing personal and professional skills that can be transferred to your future employment. Workshops cover topics such as writing skills, reference management tools, statistics, preparing for conferences, delivering presentations, time and project management, and personal development. IAD also offers online resources and planning tools to help get your research started, as well as support for tutoring and demonstrating, and public engagement and communication.

Careers Service
Our Careers Service plays an essential part in your wider student experience at the University, offering a range of tailored careers and personal development guidance and support. We support you to recognise the wealth of possibilities ahead, while at university and after graduation, helping you explore new avenues, tap into your talents and build your employability with confidence and enthusiasm.

We provide high-quality, tailored support to all students. From exploring career options to making decisions, from CV writing to interview practice, from Employ.ed internships to graduate posts and from careers fairs to postgraduate alumni events, we will help you prepare for the future. We sustain and continually develop links with employers from all industries and employment sectors, from the world’s top recruiters to small enterprises based here in Edinburgh. Our employer team provides a programme of opportunities for you to meet employers on campus and virtually, and advertises a wide range of part-time and graduate jobs.

More information: www.ed.ac.uk/careers/postgrad

Platform One
Platform One is an online meeting place where members of the University community, past and present, can gather. It aims to provide a supportive environment where students, alumni, staff and volunteers can share knowledge and experiences. Together, we form a single community that meets on Platform One. Join us and find out more about the people and possibilities.

More information: www.ed.ac.uk/platform-one

Backing bright ideas
Edinburgh Innovations, the University's commercialisation service, offers free support to student entrepreneurs including one-to-one business advice and a range of workshops, bootcamps, competitions and networking events. Successful recent clients include David Hunter, inventor of the performance-tracking golf watch Shot Scope; Orfeas Bideas, creator of the Dehumistor sound effects software used by Hollywood movies and blockbuster video games; and Enactus Edinburgh, a team of student social entrepreneurs who represented the UK in the Enactus World Cup with their local and international projects.

The School holds an Athena SWAN silver award recognising our commitment to advancing women in science: www.ecu.ac.uk/equality-charters/athena-swans/
Applications and fees

We have an online application process for all postgraduate programmes. It’s a straightforward system with full instructions, including details of any supporting documentation you need to submit.

When applying, you will set up an account, which lets you save your application and continue at another time.

Full guidance on our application system is available at: www.ed.ac.uk/postgraduate/apply

General requirements
Our usual entrance requirement for postgraduate study is a UK 2:1 degree, or its international equivalent (see www.ed.ac.uk/international/graduate-entry), in a subject related to your chosen programme. You will also need to meet the University’s language requirements (see below).

Entry requirements for individual programmes can vary, so check the details for the specific programme you wish to apply for. Research applicants with a background not directly related to chemistry may sometimes be considered – your potential supervisor can advise you on this.

References
For applications to taught programmes, the normal requirement is one reference, although an additional reference may be requested in individual cases. For applications to research programmes, two references are required. You should check online for the exact requirements for your intended programme of study. For general guidance on references, visit: www.ed.ac.uk/postgraduate/degrees

Deadlines
Some programmes have application deadlines. Please check online for details. For all other programmes, you are encouraged to apply no later than one month before the programme starts to ensure there is sufficient time to process your application. However, earlier application is recommended, particularly where there is a high demand for places or when a visa will be required. Should you wish to submit a late application, please contact us for guidance. There are no formal deadlines for research applicants, but we strongly recommend that students interested in our projects apply as soon as they become available, as places are highly competitive.

English language requirements
You must demonstrate a level of English language competency at a level that will enable you to succeed in your studies, regardless of your nationality or country of residence. We accept the following English language qualifications at the grades specified:

- IELTS Academic: total 6.5 (at least 6.0 in each module).
- TOEFL-IBT: total 92 (at least 20 in each module).
- PTE Academic: total 61 (at least 56 in each of the Communicative Skills sections).
- CAE and CPE: total 176 (at least 169 in each module).
- Trinity ISE: ISE III (with distinctions in all four components).

Please note:
- English language requirements can be affected by government policy so please ensure you visit our degree finder to check the latest requirements for your programme: www.ed.ac.uk/postgraduate/degrees
- Your English language qualification must be no more than three and a half years old at the beginning of your programme, unless you are using IELTS, TOEFL, PTE Academic or Trinity ISE, in which case it must be no more than two years old.
- We also accept recent degree-level study that was taught and assessed in English in a majority English-speaking country (as defined by UK Visas & Immigration), or at a university in a non-majority English-speaking country which has specifically been approved by the University of Edinburgh’s Admissions Qualifications Group. A list of approved universities is published on our website. If you are not a national of a majority English speaking country, then your degree must be no more than three and a half years old at the beginning of your programme of study.
- We do not require you to take an English language test before you apply.

Abbreviations: IELTS – International English Language Testing System; TOEFL-IBT – Test of English as a Foreign Language Internet-Based Test; PTE – Pearson Test of English; CPE – Certificate of Proficiency in English; CAE – Certificate in Advanced English; Trinity ISE – Integrated Skills in English.

www.ed.ac.uk/english-requirements.jpg

Tuition fees
The following table provides an overview of indicative fee levels for programmes commencing in 2020.

Please note:
- International students starting full-time taught programmes of study lasting more than one year will be charged a fixed annual fee.
- All other students on full-time and part-time programmes of study lasting more than one year should be aware that annual tuition fees are subject to revision and are typically increased by approximately five per cent per annum. This annual increase should be taken into account when you are applying for a programme.
- In addition to tuition fees, your programme may be subject to an application fee and additional costs/programme costs may apply. Please check the latest programme information online.

Asylum seeker tuition fee status and scholarship
Information for applicants seeking asylum from within the United Kingdom, who wish to commence a programme of study at the University in 2020, is available online. This includes our tuition fee rates and scholarship opportunities: www.ed.ac.uk/student-funding/asylum

Tuition fees for EU students
EU students enrolling in the 2020/21 academic year will be admitted as Scottish/EU fee status students. Taught masters students will be eligible for the same tuition support as Scottish domiciled students from the Student Awards Agency Scotland (SAAS).

For UK/EU students

<table>
<thead>
<tr>
<th>Programme</th>
<th>Annual fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taught programme 1-year FT</td>
<td>£14,600</td>
</tr>
<tr>
<td>MSc by Research 1-year FT</td>
<td>£18,750</td>
</tr>
<tr>
<td>PhD 3-years FT</td>
<td>£4,327</td>
</tr>
<tr>
<td>PhD 6-years PT</td>
<td>£2,164</td>
</tr>
</tbody>
</table>

* Figure shown is the 2019/20 fee level
All other fees quoted are indicative of 2020/21 fee levels. Because these figures are indicative, it is important you check online before you apply and check the up-to-date fee level that will apply to your specific programme: www.ed.ac.uk/student-funding/tuition-fees/postgraduate

For international students

<table>
<thead>
<tr>
<th>Programme</th>
<th>Annual fee</th>
</tr>
</thead>
<tbody>
<tr>
<td>Taught programme 1-year FT</td>
<td>£30,300</td>
</tr>
<tr>
<td>MSc by Research 1-year FT</td>
<td>£28,150</td>
</tr>
<tr>
<td>PhD 3-years FT</td>
<td>£23,500</td>
</tr>
</tbody>
</table>

* Figure shown is the 2019/20 fee level
All other fees quoted are indicative of 2020/21 fee levels. Because these figures are indicative, it is important you check online before you apply and check the up-to-date fee level that will apply to your specific programme: www.ed.ac.uk/student-funding/tuition-fees/postgraduate
The Scottish Government’s initiative to attract international students through the Saltire Scholarship Scheme, as well as the University of Edinburgh’s help and support for international students, has helped provide me with an opportunity that I would never have conceived of prior to starting my studies at Edinburgh.

Robert Starr, MSc: High Performance Computing, Scotland’s Saltire Scholarship
The School of Chemistry is based in the Joseph Black Building on the King’s Buildings campus. The campus is around two miles from Edinburgh city centre and is well served by buses.
On 23 June 2016 the UK electorate voted in a national referendum to leave the European Union. EU postgraduate taught students enrolling in the 2020/21 academic year will be admitted as Scottish/EU fee status students and eligible for the same tuition support as Scottish domiciled students for the duration of their studies. This will still be the case in the event of a Brexit no deal scenario. For the latest information for students and applicants from the EU, please visit our website: www.ed.ac.uk/news/eu

The University’s standard terms and conditions will form an essential part of any contract between the University of Edinburgh and any student offered a place here. Our full terms and conditions are available online: www.ed.ac.uk/student-recruitment/terms-conditions

© The University of Edinburgh 2019. No part of this publication may be reproduced without written permission of the University. The University of Edinburgh is a charitable body registered in Scotland, with registration number SCO05336.