THE UNIVERSITY OF EDINBURGH: INFLUENCING THE WORLD SINCE 1583

Our proud history and alumni ambassadors
For more than 400 years our staff and students have been making their mark on the world. They’ve explored space, revolutionised surgery, won Nobel Prizes, published era-defining books, run the country, paved the way for life-saving breakthroughs and laid the foundations for solving the mysteries of the universe. By choosing further study or research at Edinburgh you will be joining a community of scholars who have been at the forefront of knowledge since 1583.

We are associated with 20 Nobel Prize winners, including physicists Peter Higgs, Charles Townes and Max Born, medical researcher Peter Doherty, economist Sir James Mirrlees and biologist Sir Paul Nurse. Our distinguished alumni include NASA astronaut Piers Sellers, former MI6 Director-General Dame Stella Rimington, Olympians Sir Chris Hoy and Katherine Grainger and astronauts Piers Sellers, former MI5 Director-General Dame Stella Rimington, giving us strong links with leading European universities and the Coimbra Group, as well as the University of KwaZulu-Natal – to name but a few. We are a member of the League of European Research Universities and the Coimbra Group, giving us strong links with leading European institutions from Barcelona to Berlin.

Teaching and research excellence
We are consistently ranked as one of the world’s top 50 universities. We are 17th in the 2014/15 QS World University Rankings. As home to more than 30,000 students from some 137 countries, studying across 100 academic disciplines, the University of Edinburgh continues to attract the world’s greatest minds. In the Research Excellence Framework (REF) 2014, 83 per cent of our research was judged world-leading or internationally excellent. We’re ranked fourth in the UK for research power, based on the quality and breadth of our research. Our excellent teaching was also confirmed in the latest report from the Quality Assurance Agency, which awarded us the highest rating possible for the quality of the student learning experience.

Collaborations and international partnerships
As an internationally renowned centre of academic excellence, Edinburgh is the site of many world-class research collaborations. Our postgraduate students are crucial to our continued success and development and, along with our staff, they forge research links through regular travel and overseas exchanges. We take pride in our partnerships with other institutions such as the California Institute of Technology (Caltech), Stanford University, the University of Melbourne, Peking University, the University of Delhi and the University of KwaZulu-Natal – to name but a few. We are a member of both the League of European Research Universities and the Coimbra Group, giving us strong links with leading European institutions from Barcelona to Berlin.

Linking research and commerce
Edinburgh was one of the first UK universities to actively develop commercial links with industry, government and the professions. Edinburgh Research and Innovation (ERI) has continued, for the past four decades, to develop the promotion and commercialisation of the University’s research excellence. ERI assists our postgraduates in taking a first step to market, whether it is through collaborative research, licensing technology or providing consultancy services.

Enhancing your career
We’re ranked 18th in the world for the employability of our graduates. With one of the best track records for graduate employment in the Russell Group, we are committed to embedding employability into your teaching and learning experience. From offering access to volunteering schemes to providing support from our sector-leading Careers Service, the University provides myriad opportunities to develop your skills, knowledge and experience giving you the edge in a competitive job market.

An inspiring destination
Your first-class education will take place in one of Europe’s most striking capital cities, a UNESCO World Heritage Site that is regularly voted one of the best places in the world to live. Edinburgh enjoys a solid reputation as a centre for innovation, whether as the host to the 18th-century Scottish Enlightenment, as a modern source of pioneering science, medicine and technology, or as the host of the world’s largest and longest-established arts festival. You couldn’t ask for a more inspiring setting in which to further your knowledge and broaden your horizons.

Join us
Edinburgh offers unparalleled academic breadth and diversity, making it a vibrant, challenging and stimulating environment for postgraduate study. Whether you plan to change direction, enhance your existing career or develop in-depth knowledge of your area of study, the University of Edinburgh provides a world-class learning experience.

*Latest Emerging Global Employability University Rankings
As the birthplace of the Higgs mechanism and the prediction of the Higgs boson, the University of Edinburgh’s School of Physics & Astronomy has a strong track record of innovation and research excellence.

Facilities and resources

Our School, home to around 100 academics devoted to research and teaching, offers the breadth of expertise and world-class facilities that will inspire you to produce groundbreaking work.

You’ll be encouraged to explore the best the world can offer in your field of interest. Our connections with organisations such as CERN can widen your horizons, as can visits to international conferences and events. Thanks to our reputation as a centre for research excellence, we regularly play host to specialist conferences, and you can expect to have access to some of the most respected names in the field.

World-leading facilities
World-leading research requires exceptional facilities to help fulfil your academic ambitions. While we have established strong connections with many prestigious global research centres, a number of internationally recognised facilities are based here at Edinburgh. They include:

The Higgs Centre for Theoretical Physics
The discovery in July 2012 of the Higgs boson at CERN, almost half a century after Peter Higgs’ prediction in 1964, is a milestone in the history of theoretical physics. Rarely has a theoretical prediction been confirmed so spectacularly, so long after it was made. The theoretical ideas put forward by Peter Higgs, Francois Englert, and Robert Brout, inspiring thousands of physicists and putting in motion the experimental searches for the Higgs boson, were celebrated with the Nobel Prize in Physics awarded in October 2013.

The discovery marks the start of a new era in theoretical physics. While the Standard Model of elementary particle physics is now complete, many fundamental questions remain unanswered. We still don’t understand the intricate structure of charges and flavours in the Standard Model, or what determines the values of its parameters. We are still struggling to build a compelling theory of quantum gravity, and understand the role played by the vacuum in the formation of the early universe. We have no idea what dark matter and dark energy are, and we have difficulty understanding structure formation and complexity.

The Higgs Centre for Theoretical Physics has been established by the University to seek answers to some of these questions, by creating opportunities to formulate new theoretical concepts to take us beyond the limitations of current paradigms.

UK Centre for Astrobiology
We are affiliated with the UK Astrobiology Institute and have a mission to advance our understanding of molecules and life in extreme environments on Earth and beyond. We do this with a combination of theoretical, laboratory, field and mission approaches. We apply this knowledge to improving the quality of life on Earth and developing space exploration as two mutually enhancing objectives. Our work is underpinned by broad and compelling questions: How did life originate? Is there life elsewhere in the Universe? What are the limits of the Earth’s biosphere? Can we establish a permanent human presence beyond the Earth? We study the responses of molecules to extreme environments, including the space environment, simulate extra-terrestrial environments, and maintain a 1.5km deep subsurface biology laboratory at the Boulby Mine in Yorkshire, England.

EPCC
EPCC is one of Europe’s foremost supercomputing centres. Its aim is to accelerate the effective exploitation of novel computing throughout industry, academia and commerce. This is achieved through activities including research, training programmes and commercial contract work.

The Centre provides access to novel computing expertise and houses an exceptional range of specialist computing facilities: from enterprise-level servers to world-class high performance computers, including UK national supercomputing services.

The Centre for Science at Extreme Conditions (CSEC)
At this highly specialised laboratory, the physical properties of materials can be measured at extremely high pressures. CSEC, which has risen to international prominence over the past 20 years, provides the infrastructure needed to explore the effects of pressure on structure at interatomic distances.
Community

As you would expect from one of the largest physics research centres in the UK, our academic community spans a broad range of subject areas.

Our membership of SUPA helps ensure you have access to experts from other institutions through our membership of the Scottish Universities Physics Alliance (SUPA). This means you’ll be undertaking your research in an environment that encourages discovery through collaboration. You’ll be part of a vibrant and motivated group of researchers, and will be able to participate in events aimed at developing strong collaborative links.

Social networking

You’ll have plenty of opportunities to leave your office or lab to enjoy the company of your peers. Edinburgh University Students’ Association (EUSA) has a host of societies, sporting activities and social events waiting for you, and is an excellent way of getting to know other students. EUSA is one of the oldest students’ associations in the UK.

SUPA connections

Our membership of SUPA helps ensure exposure to as broad a range of thinking as possible. SUPA features courses, guest lecturers and online events aimed at bringing together the expertise of Scotland’s physicists and astronomers. You’ll have the opportunity to connect with your peers from other Scottish universities and establish your place within the wider scientific community.

Employability and graduate attributes

As well as the specific skills you will gain throughout your studies, you will also develop techniques and abilities that will give you a head start in any career. We offer outstanding services to enhance your employability and make the most of your time here.

Institute for Academic Development

All of our postgraduate students can benefit from the University’s Institute for Academic Development (IAD), which provides information, events and courses to develop the skills you will need throughout your studies and in the future.

Further information is available online: www.ed.ac.uk/iad/postgraduates

For taught postgraduates, the IAD provides a growing range of tailored study-related and transferable skills workshops, plus online advice and learning resources. These are all designed to help you settle into postgraduate life, succeed during your studies, and move confidently to the next stage of your career.

The IAD also offers one of the longest-established researcher development training packages in the UK. Our experts will help you gain the skills, knowledge and confidence needed to move on to the next stage in your career, be that in academia or beyond.

The Institute provides research students with dedicated training in topics such as research management; personal effectiveness; communication skills; public engagement, networking and teamworking; leadership; and career management. You can gain expertise in information technology and presentation skills; confidence in undertaking independent and creative research; the ability to critically evaluate source materials; and the capacity to construct intellectually rigorous arguments. By developing these broader professional skills and qualities, our postgraduate students are always in high demand.

Careers Service

The University’s award-winning Careers Service aims to expand the horizons of all our students, empowering you to make successful career decisions. It works closely with the University’s Employability Consultancy to support students to take advantage of every opportunity to enhance their employability while studying.

The Service provides specialist support for postgraduate students to help with career planning and decision making. Its team of friendly experts can support you to explore different career options, identify your skills and what you want out of a career, think about effective job search strategies, and prepare for job applications and interviews.

The Service has a team dedicated to developing our already strong links with employers from all industries and employment sectors; from the world’s top recruiters to small enterprises based here in Edinburgh. The team provides a programme of opportunities for students to meet employers on campus and virtually, and advertises a wide range of part-time and graduate jobs.

More information: www.ed.ac.uk/careers/postgrad

Connect.ed

Edinburgh encourages its alumni to stay in touch with current students who are interested in a similar career path. Connect.ed is a networking system run by the Careers Service that provides a confidential opportunity for alumni to share their occupational knowledge and experience with current students, who can contact them for advice and guidance on their future career.

More information: www.ed.ac.uk/careers/connected

Backing bright ideas

LAUNCH.ed is the University’s award-winning programme for student entrepreneurs. Each year, LAUNCH.ed works with hundreds of students to assess their ideas and develop their business skills and helps many start their businesses. We have helped Edinburgh students and alumni launch almost 100 new businesses in the last three years, ranging from language tuition to robotics companies.

More information: www.LAUNCH.ed.ac.uk

Equality recognition

The School has been awarded Athena SWAN Silver status and Juno Champion status in recognition of our ongoing commitment to advancing women’s careers in education and research.

More information: www.ecu.ac.uk/athena-swan

Connect.ed encourages its alumni to stay in touch with current students who are interested in a similar career path and helps many start their businesses. We have helped Edinburgh students and alumni launch almost 100 new businesses in the last three years, ranging from language tuition to robotics companies.

More information: www.LAUNCH.ed.ac.uk

Equality recognition

The School has been awarded Athena SWAN Silver status and Juno Champion status in recognition of our ongoing commitment to advancing women’s careers in education and research.

More information: www.ecu.ac.uk/athena-swan

www.iop.org/juno

“I’m very pleased to support the two MSc programmes in theoretical and mathematical physics. This initiative will greatly help the University of Edinburgh to play a major role in training the next generation of theoretical physicists.”

Peter Higgs, Emeritus Professor of Theoretical Physics, University of Edinburgh
High Performance Computing/High Performance Computing with Data Science

MSc 1 yr FT (3 yrs FT available for UK/EU students)
Pgdip 9 mths FT (Only available in High Performance Computing)

Programme description
You will study at EPCC, the UK’s leading supercomputing centre. EPCC is the major provider of high performance computing (HPC) training in Europe with an international reputation for excellence in HPC education and research. Our staff have a wealth of expertise across all areas of HPC, parallel programming technologies and data science. Our two MSc programmes have a strong practical focus and provide access to leading-edge HPC systems such as ARCHER, which is the UK’s largest, fastest and most powerful supercomputer, with more than 100,000 CPU cores.

MSc High Performance Computing
HPC is the use of powerful processors, networks and parallel supercomputers to tackle problems that are very computationally or data intensive. You will learn leading-edge HPC technologies and skills to exploit the full potential of the world’s largest supercomputers and multicore processors. This is a well-established programme that has been successful in training generations of specialists in parallel programming.

MSc High Performance Computing with Data Science
Data science involves the manipulation, processing and analysis of data to extract knowledge, and HPC provides the power that underpins it. You will learn the multidisciplinary skills and knowledge in both HPC and data science to unlock the knowledge contained in these increasingly large, complex and challenging data sets that are now generated across many areas of science and business.

Programme structure
Both programmes take the form of two semesters of taught courses followed by a dissertation project. Your studies will have a strong practical focus and you will have access to a wide range of HPC platforms and technologies. You will take seven compulsory courses, which provide a broad-based coverage of the fundamentals of HPC, parallel computing and data science. The option courses focus on specialist areas relevant to computational science. Assessment is by a combination of coursework and examination. Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

Programme description
These programmes are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable in a wide range of research areas, while emphasising the underlying physics concepts.

The programmes are a core part of the Higgs Centre for Theoretical Physics, which has been created to mark the start of a new era in theoretical physics research, following the discovery of the Higgs boson at CERN. You will take part in the centre’s activities, including weekly seminars, colloquia and workshops involving physicists from around the world, and you will be involved in research-level projects as part of your dissertation.

The partnership between mathematics and physics is an essential one. In theoretical physics we try to abstract mathematical constructs that rationalise, explain and predict physical phenomena. To do this we need mathematics: the language of physics. The underlying structure of the physical world can be understood in great detail using mathematics; this is a never-ending source of fascination to theoretical physicists.

Programme description
You will take two compulsory courses plus a selection of courses that will bring you to an advanced level in subjects such as general relativity, cosmology, statistical physics, condensed matter physics, quantum field theory and the standard model of particle physics. You may also take courses drawn from a wider pool including specialist courses in mathematics, computing and climate science. For Mathematical Physics, mathematics courses can account for up to half of the taught course element.

Following the taught component of the programme, you will undertake a three-month research project, which leads to a dissertation. Through our strong links with industry, we offer our students the opportunity to undertake their dissertation project with one of a wide range of local companies.

Career opportunities
These degrees are designed to prepare you for a research career in academia or industry by introducing advanced ideas and techniques that are applicable to a wide range of research areas and sectors including academia, industry, education and finance.

Programme description
This is a never-ending source of fascination to theoretical physicists. The physical world can be understood in great detail using mathematics; this is a never-ending source of fascination to theoretical physicists.

English language requirements
See page 15.

Fees and funding
See page 15.

Contact MSc Administrator
Tel +44 (0)131 651 7067
Email msc@epcc.ed.ac.uk

More information:
www.epcc.ed.ac.uk/mscfees-funding
Research opportunities and support

We offer a diverse range of PhD degrees across all of our areas of research. You will be supported by courses designed for PhD students, in addition to those offered by the SUPA Graduate School and the Institute for Academic Development.

A Graduate School Forum provides an interface between students and the Graduate School where issues concerning students can be discussed and resolved.

All PhD students are automatically members of the Physics Intergroup Postgraduate Committee (PIPC), which combines seminars and workshops in specific and general subject areas. PIPC organises an annual residential trip to the Forth Bridge Field Centre, on the shores of Loch Tay in the Scottish Highlands. With everything from cycling to canoeing on offer, this is the perfect opportunity to blow away the cobwebs and get to know your fellow research students.

For further information on the PhD programme, see: www.ed.ac.uk/studying/postgraduate-research-opportunities

You can ‘meet’ current students and find out what they think about their programmes at: http://youtu.beQ7q7x5yEv

See also...

You may be interested in postgraduate opportunities elsewhere within the University, in particular programmes offered by the schools of Biological Sciences, Chemistry, Informatics or Mathematics, or the CPO programmes offered by the Moray House School of Education.

www.ed.ac.uk/studying/prospectus-request

www.ed.ac.uk/pg/189

Astrophysics

PhD 3 yrs FT

Based at the historic Royal Observatory Edinburgh, the Institute for Astronomy (IfA) is one of the world’s leading centres in astronomical research. We share our picturesque base on Blackford Hill with the UK Astronomy Technology Centre (ATC) – the UK’s leading astronomical Instrument maker – so as a postgraduate student you will be joining a vibrant community of specialists. There are around 30 PhD students based at the IfA at any given time.

Research environment

The scope of our research is as wide as the cosmos we explore. Thanks to our affiliation with the UK ATC and our strong links with related research centres in the School of Physics & Astronomy, we are in a rare position to accommodate a diversity of research specialties. The particular areas of research that are currently being pursued are too numerous to list here, but they include: cosmology (large-scale structure in the universe, galaxy formation, dark matter and dark energy, particle cosmology), active Galactic nuclei and related objects, nearby galaxies (large-scale star formation, structure, content and evolution of galaxies); stellar astronomy (parallax and proper motion studies, the stellar luminosity function, symbiotic stars); star formation (observation and theoretical studies, star formation in external galaxies); planet formation (disc and planet formation in protostars, discs around pre-main sequence stars); exoplanets; and computational astrophysics (through the Edinburgh Centre for Computational Astrophysics).

Observational PhDs use large telescopes in Chile, Hawaii, the Canary Islands and Australia, plus space missions and observatories including the Hubble Space Telescope and Gaia.

An inspiring setting

Not only will you be bounded by a wealth of expertise at the Royal Observatory Edinburgh, but our historic setting also provides a constant backdrop to our research. Our historic site is located on the heights of Edinburgh, set against the backdrop of the old town, the Commonwealth War Graves cemetery and the Edinburgh Castle.

Excellent prospects

Graduates from the IfA are among the most highly sought after candidates for academic and commercial positions. Your degree will see you well placed to take up a rewarding role that applies your knowledge to the advancement of astrophysics.

English language requirements

See page 15.

Fees and funding

www.ed.ac.uk/student-funding/postgraduate

For funding information see also page 12.

www.ed.ac.uk/pg/190

Condensed Matter & Complex Systems

PhD 3 yrs FT

The Institute for Condensed Matter and Complex Systems encompasses a myriad of scientific work from quantum ordering to astrobiology. Our interests overlap with computational materials science and biological and earth sciences, so our PhD students benefit from developments in statistical physics, novel simulation methodologies and cutting-edge experiments. The challenge is to understand out of equilibrium behaviour for which no general theory exists and for which experiments consistently reveal unexpected phenomena.

Research environment

The Institute divides into two broad research groups:

SOFT MATTER, STATISTICAL AND BIOLOGICAL PHYSICS

Soft matter research concerns liquids, solids, and viscoelastic materials (such as polymers and suspension). We discover and characterise these novel materials in the laboratory and seek to understand the microscopic origins of their properties. Statistical physics describes the behaviour of large numbers of microscopic constituents and provides the theory of condensed matter and complex systems. Our challenge is to understand systems out of equilibrium through the analytical and numerical study of simple model systems as well as real world applications such as bacterial evolution. Our research in biological physics and in active matter spans aqueous solutions of small bioactive molecules through proteins and DNA to single cells, cell-cell interactions, and collections of organisms in ecosystems. We use state-of-the-art optical techniques and have dedicated wet labs.

QUANTUM ORDERING AND PHYSICS AT EXTREME CONDITIONS

Quantum ordering is manifested in the collective quantum states of electrons. We examine how and why particular states form and investigate their novel properties, including unusual forms of superconductivity. We investigate new materials in which completely unexpected types of quantum ordering may occur. In future this could allow materials with these novel properties to be engineered. Extreme conditions in physics studies matter under very high pressures and temperatures. By exploring the density, the properties of matter can be dramatically altered. We aim to understand these phenomena and characterise new behaviours. We use in-house light spectroscopy, and x-ray and neutron diffraction at facilities worldwide, including the European Synchrotron Radiation Facility; the Spallation Neutron Source, Tennessee; and high-powered lasers like the national ignition facility in California.

Leading centres

We have access to the resources of some of the top facilities in Europe and the UK. We host the UK Centre for Astrobiology, where the responses of molecules to life in extreme environments are studied. We examine the structure and properties of materials at extremes of pressure and temperature in internationally-leading facilities at the Centre for Science at Extreme Conditions. Our computer simulators and theorists can access EPCC’s 800-teraflop IBM BG Q supercomputer, and Eddie, the University’s 2500+ core multipurpose machine. Our condensed matter theorists are full participants in the Higgs Centre for Theoretical Physics.

Careers success

Our graduates have pursued highly diverse and successful careers in academia and industry. Recent graduates have secured positions at the Diamond Light Source in the UK, and further afield at the European Spallation Source (Lund), ANSTO (Sydney) and HPSIAR (Shanghai).

English language requirements

See page 15.

Fees and funding

www.ed.ac.uk/student-funding/postgraduate

For funding information see also page 12.

The University of Edinburgh Physics & Astronomy Postgraduate Opportunities 2016 entry

Case study: Edinburgh’s research with impact

Healthcare research using high-performance computing

When creating their groundbreaking Blue Gene project, aimed at bringing high performance computing (HPC) to the healthcare industry, researchers recognised the need for specialist expertise in the field. With researchers at the University’s School of Physics & Astronomy acknowledged as leaders in this area of computing, the HPC giant called on a team led by Professor Jason Crain to enter into collaboration on the project.

Project background

This university-industry collaboration of HPC and life sciences came about when IBM identified the potential market for the partnership. In 2001 the company began serious efforts to exploit transformational opportunities that information technology and materials simulation held for the healthcare industry. The aim was to create a petascale supercomputer to address major problems, with a particular focus on life sciences and biomolecular structure prediction.

Professor Crain and the team were chosen for their expertise in computational methods development coupled with carefully coordinated experimental measurements – neither of which IBM was able to perform in-house. The team’s contributions directly supported IBM’s requirement to improve the impact and uptake of HPC in the life sciences.

Project results

As a result of the work of our School of Physics & Astronomy researchers, IBM has significantly expanded the HPC division of its business and is now a leader in providing HPC for the life sciences market. These studies of molecular dynamics were developed initially for the first generation of IBM’s Blue Gene supercomputers, then led to improved algorithms and improved software and data analysis tools that IBM were (and are) able to offer customers. The improved HPC systems, created with the assistance of research from the School, are of great benefit to the pharmaceutical and life sciences market.

The team’s contributions directly supported IBM’s requirement to improve the impact and uptake of HPC.

See more online: www.ed.ac.uk/research/impact
The year I spent in Edinburgh was one of the most enjoyable of my life. Very friendly staff and classmates, together with excellent facilities and a beautiful city created a welcoming and supportive environment. I am very thankful to EPCC for such a wonderful experience.

Alan Richardson, MSc in High Performance Computing graduate
The Scottish Government’s initiative to attract international students from Canada, China, India and the US through the Saltire Scholarship Scheme, as well as the University of Edinburgh’s help and support for international students, has helped provide me with an opportunity that I would never have conceived of prior to starting my studies at Edinburgh.”

Robert Starr, MSc High Performance Computing, Scotland’s Saltire Scholarship

Funding

A large number of scholarships, loans and other funding schemes are available for your postgraduate studies. It is only possible to show a small selection in print. To see the full range, please visit: www.ed.ac.uk/student-funding/postgraduate

Loans available for study at the University of Edinburgh

The University of Edinburgh offers a participating institution in the following loan programmes, meaning we certify your student status and can help with the application process.

• The Canada Student Loans Program
• The Student Awards Agency Scotland
• US Student Loans

Research council awards

Research councils offer awards to masters, PhDs and PhD students in most of the UK for the preceding three years are eligible for a full award. For some awards, candidates who are EU nationals and are resident in the UK may be eligible for a fees-only award. www.ed.ac.uk/student-funding/research-councils

Fees

There are EU, non-EU international and home fees. EU and non-EU students pay different rates. For more information, please visit: www.ed.ac.uk/student-funding/fees

Key

Taught masters programmes
 Masters by Research programmes
 Research programmes

Scholarships

The University offers a number of scholarships in partnership with the following overseas government agencies:

• Chile
• Colombia
• Ecuador
• Mexico
• Nigeria

The University of Edinburgh scholarships

The University offers a number of scholarships in partnership with the following overseas government agencies:

• Chile
• Colombia
• Ecuador
• Mexico

Other scholarship opportunities include:

• China Scholarships Council/University of Edinburgh Scholarships (China)
• Edinburgh Global Masters Scholarships
• Edinburgh Global Research Scholarships
• Edinburgh Global Scholarships (China)
• Education Loans
• Government scholarships
• Hart Foundation Scholarships
• Harry Frank Guggenheim Fellowship
• Higher Education Loans
• University of Edinburgh scholarships

Research

Research opportunities are open to students who have been accepted on a full-time masters degree programme. The opportunities are aimed at attracting high-quality international research students to the University:

• Higgs Centre International Prizes (SUPA)
• Studentships

Scholarships

The following are examples of the many scholarships and support schemes available:

• The Scottish Doctoral Training Centre for Condensed Matter Physics
• The Scottish Doctoral Training Centre for Condensed Matter Physics is a tri-institutional collaboration between the universities of St Andrews, Edinburgh and Heriot-Watt. It offers more than 10 four-year PhD fully funded studentships each year: http://apply.supa.ac.uk
• Scottish Universities Physics Alliance (SUPA) International Prize PhD Studentships
• UK/EU Masters Scholarships
• University of Edinburgh PhD Scholarships

Other sources of funding

The following are examples of the many scholarships and support schemes available to students from particular countries who meet certain eligibility criteria.

• Beit Trust
• Beit Trust Scholarships support postgraduate students from Malawi, Zambia and Zimbabwe, usually to undertake a masters degree: www.beittrust.org.uk
• Chevening Scholarships
• Chevening Scholarships are available to one-year masters students: www.chevening.org
• Commonwealth Scholarships
• Commonwealth Scholarships are available to students who are resident in any Commonwealth country, other than the UK: www.dfid.gov.uk/cscuk
• Durham Centre for Doctoral Training in Soft Matter and Functional Interfaces (SOFI CDT)
• The SOFI CDT combines expertise from the three universities comprising the Centre, one of which is Edinburgh: www.dur.ac.uk/student-funding/studentships
• Fulbright Scholarships (USA)
• Fulbright Scholarships are available to US graduate students in any subject wishing to study in the UK: www.iie.org/fulbright
• Marshall Scholarships (USA)
• Marshall Scholarships available to outstanding undergraduate students applying to any UK university for at least two years: www.marshallscholarship.org
• Scotland’s Saltire Scholarships
• Scotland’s Saltire Scholarships
• Silber Request

Funding is available to help prospective postgraduate students living in the UK who have been granted refugee status: www.ed.ac.uk/student-funding/silver
How to apply

We have an online application process for all postgraduate programmes. It’s a straightforward system with full instructions, including details of any supporting documentation you need to submit.

When applying, you will set up an account, which lets you save your application and continue at another time. Full guidance on our application system is available at: www.ed.ac.uk/postgraduate/applying

General requirements

Our usual entrance requirement for postgraduate study is a UK 2:1 degree, or its international equivalent (www.ed.ac.uk/international/country), in a relevant field, such as physics, astronomy, computer science, mathematics or engineering.

If your background is not directly related to physics or astronomy, you may still be considered. Please contact the programme administrator to discuss your suitability.

You will also need to meet the University’s language requirements (see right).

Entry requirements for individual programmes can vary, so check the details for the specific programme you wish to apply for.

References

For applications to taught programmes, the normal requirement is one reference, although an additional reference may be requested in individual cases. For Mathematical Physics/Theoretical Physics and applications to research programmes, two references are required. You should check the entry online for exact requirements for your intended programme of study.

For general guidance on references, visit: www.ed.ac.uk/postgraduate/references

Taught programmes

Deadlines

Some programmes have application deadlines. Please check the programme entry online for details. For all other programmes, you are encouraged to apply no later than one month prior to the entry to ensure there is sufficient time to process your application. However, earlier application is recommended, particularly where there is a high demand for places or when a visa will be required. Should you wish to submit a late application, please contact us for guidance.

Most scholarships (including the Masters Scholarships in High Performance Computing) have application deadlines in early May, and in most cases you need to apply for your University place before you can be considered for scholarships.

Procedure

• Thoroughly explore this prospectus and our website to identify your preferred programme of study.
• Check you meet all entry requirements.
• Check any funding deadlines.
• Visit www.ed.ac.uk/pgdegrees, navigate to your chosen programme, and click on Apply. Follow the instructions within the online application system, including details of documentation you must supply.

More information

You’ll find more information on our taught programmes at: www.ph.ed.ac.uk/studying/postgraduate-taught

Should you have any more questions or need more information, please contact the programme administrator, who will be more than happy to talk to you about a possible application.

Research programmes

Deadlines

You may apply for admission to PhD studies at any time but we encourage you to make your application by the end of January. This is so that you can be notified of scholarship application deadlines if you need to apply for these to support your studies.

Procedure

• Thoroughly explore this prospectus and our website to identify your preferred programme of study. More information: www.ph.ed.ac.uk/studying/postgraduate-research/research-opportunities
• There is no need to contact potential supervisors before you make your application. The PhD selectors and supervisors will want to see your application before any discussions with you take place.
• Check you meet all entry requirements.
• Visit www.ed.ac.uk/pgdegrees, navigate to your chosen programme, and click on Apply. Follow the instructions within the online application system, including details of documentation you must supply.
• For your initial application, you need only state the research area(s) that you are interested in and the title of one (or more) of the projects listed on the School of Physics & Astronomy website (above). Please upload a full research proposal if you want to take a project which is not advertised on the website.
• When you have submitted your application, you will receive an email from the Graduate School Administrator to thank you for your application, giving you further information on the PhD programme and how your application will be processed.

Joining us from overseas

International applicants are advised to check the University’s website to find out more about their visa options and our Integrated English for Academic Purposes (IEAP) programme. More information: www.ed.ac.uk/international/ieap

International agents

The University has certified representative agents in the following locations: Brunei, Canada, China, Gulf Region, Hong Kong, India, Japan, Jordan, Korea, Malaysia, Mexico, Nigeria, Norway, Russia, Saudi Arabia, Singapore, South Africa, South Korea, Taiwan, Thailand, Turkey, Zambia and Zimbabwe. International applicants can use an agent to help guide them through the application process if necessary. For more information visit: www.ed.ac.uk/postgraduate/research/research-opportunities

English language requirements

Students whose first language is not English must show evidence of one of the qualifications below:

• IELTS Academic: total 6.5 (at least 6.0 in each module).
• TOEFL-iBT: total 92 (at least 20 in each module).
• PTE(A): total 61 (at least 56 in each of the Communicative Skills sections).
• CAE and CPE: total 176 (at least 169 in each module).

Please note:

• English language requirements can be affected by government policy so please ensure you visit our degree finder to check the latest requirements for your programme: www.ed.ac.uk/pgdegrees
• Your English language certificate must be no more than two years old at the beginning of your programme.
• We also accept recent degree-level study that was taught and assessed in English in a majority English speaking country (as defined by UK Visas & Immigration).

Scholarships in High Performance Computing (HPC)

The University also runs online information visits for prospective students so that you can learn about our taught and research opportunities. The Open Day is an opportunity to meet current staff and students. Our next campus-based Open Day takes place on Wednesday, 11 November 2015. For more information, visit: www.ed.ac.uk/postgraduate-open-day

The University’s Postgraduate Open Day is your opportunity to come and meet current staff and students. Our next campus-based Open Day takes place on Wednesday, 11 November 2015. For more information, visit: www.ed.ac.uk/postgraduate-open-day

For more information about applying for an MSc, contact:

MSc Administrator
Tel +44 (0)131 651 7067
Email msc@ppc.cc.ed.ac.uk

For more information about applying for our doctorate programmes, contact:

Graduate School Administrator
Tel +44 (0)131 651 7837
Email enquiries@ph.ed.ac.uk

For any other enquires, contact:

School of Physics & Astronomy
The University of Edinburgh
James Clerk Maxwell Building
King’s Buildings
Mayfield Road
Edinburgh EH9 3JZ, UK
Tel +44 (0)131 651 7067
Email enquiries@ph.ed.ac.uk

Institute for Astronomy
The University of Edinburgh
Royal Observatory
Blackford Hill
Edinburgh EH9 3HJ, UK
Tel +44 (0)131 668 8403

If you are unable to attend our Open Day but would like to visit us, please get in touch. We are happy to organise individual visits for prospective students so that you can have a tour around our buildings and talk to staff.

The University also runs online information sessions for prospective postgraduate students throughout the year. For more information, visit: www.ed.ac.uk/postgraduate/online-events
The School of Physics & Astronomy's teaching and administration centre is in the James Clerk Maxwell Building, on the University's King's Buildings campus, about two miles south of the city centre. The Institute for Astronomy is based at the Royal Observatory, also in the south of the city.

“Edinburgh isn’t so much a city, more a way of life . . . I doubt I’ll ever tire of exploring Edinburgh, on foot or in print.”

Ian Rankin, best-selling crime writer and University of Edinburgh alumnus

Detailed maps can be found at: www.ed.ac.uk/maps