Pre-Hospital Critical Care

June 2016

Mark J G Dunn
Consultant in Critical Care, Emergency Medicine and Retrieval Medicine
The Royal Infirmary of Edinburgh
Emergency Medical Retrieval Service, ScotSTAR, Glasgow

markdunn@nhs.net
Aims

• What happens now?

• Pre-Hospital trauma care – the scary truth

• What is the evidence?

• Human Factors - again!
What can they do?

• Paramedic
 – Not Ambulance care assistant
 – Not driver
 – Not Ambulance technician
What can they do?

• **C**
 – Pressure dressing

• **A**
 – O₂
 – C-spine collar, blocks and tape
 – Adjuncts
 – 1st and 2nd Gen SGDs
 – Intubate the cardiac arrest patient
 – Needle cric

• **B**
 – BVM
 – Needle thoracocentesis

• **C**
 – IV cannulae
 – IO access (on some vehicles PRU, SORT)
 – IV crystalloid
 – TXA - coming very soon
 – Pelvic binder
 – Splints

• **D**
 – Analgesia (Morphine, Entonox)
 – Spinal immobilisation

• **E**
 – Packaging (scoop stretcher, blankets)
What can they do?

- C
 - Pressure dressing
- A
 - O2
 - C-spine collar, blocks and tape
 - Adjuncts
 - 2nd Gen SGDs
 - Intubate the cardiac arrest patient
 - Needle cric
- B
 - BVM
 - Needle thoracocentesis
- C
 - IV cannulae
 - IO access (on some vehicles)
 - IV crystalloid
 - TXA - coming very soon
 - Pelvic binder
 - Splints
- D
 - Analgesia (Morphine, Entonox)
 - Spinal immobilisation
- E
 - Packaging (scoop stretcher, blankets)
What can the team do?

- **C**
 - CAT, military style pressure dressings, haemostatic agents

- **A**
 - O$_2$
 - C-spine collar, blocks and tape
 - Adjuncts
 - 1st and 2nd Gen SGDs
 - Intubate the cardiac arrest patient
 - Needle cric

- **B**
 - BVM
 - Needle thoracocentesis

- **C**
 - IV cannulae
 - IO access (on some vehicles)
 - IV crystalloid
 - TXA - coming very soon
 - Pelvic binder
 - Splints

- **D**
 - Analgesia (Morphine, Entonox)
 - Spinal immobilisation

- **E**
 - Packaging (scoop stretcher, blankets)
primum non nocere
first - do no harm
Science in Trauma Care

• Practices with strong positive evidence:
 – Access to trauma centers
 – Specialized care (paediatrics, burns, spinal cord injury)
Science in Trauma Care

• Practices with positive evidence:
 – Permissive hypotension (balanced resus)
 – Splinting
 – Pain management
 – Head injury management
 – Hemoglobin-Based Oxygen Carrying Solutions (HBOCs)
Science in Trauma Care

• Practices with no evidence or equivocal evidence:
 – The “Golden Hour”
 – Medical helicopters
 – Trendelenburg position
 – Traction splints
 – Rapid sequence intubation (RSI) in traumatic brain injury (TBI)
Science in Trauma Care

• Practices with negative evidence:
 – MAST/PASG
 – Steroids for acute SCI
 – High-volume fluid therapy
 – Prehospital intubation (non-RSI) in traumatic brain injury
 – Paediatric endotracheal intubation
Science in Trauma Care

- Practices with strong negative evidence:
 - Scene stabilization
Changes in Trauma Practice

• IV Fluid Restriction
• Permissive Hypotension
• Haemoglobin-Based Oxygen Carrying Solutions (HBOCs)
• Less Aggressive Airway Management
• Helicopter Overutilization
IV Fluid Restriction & Balanced Resuscitation

• Raising the BP and restoring perfusion to vital organs are clearly believed to be beneficial after haemorrhage is controlled.

• Growing evidence indicates that raising it before achieving adequate haemostasis may be detrimental.
IV Fluid Restriction & Balanced Resuscitation

- Literature has primarily looked at penetrating trauma.
- The role of fluid resuscitation in patients with blunt trauma is less clear.
- Further studies are needed.
IV Fluid Restriction & Balanced Resuscitation

- Patients with hypotension due to severe haemorrhage from isolated extremity injuries may do better with aggressive prehospital IV fluid resuscitation after hemostasis.
IV Fluid Restriction & Balanced Resuscitation

• Conclusions:
 – More research is needed.
 – Data on penetrating trauma is compelling.
 – Fluid resuscitation probably indicated for moribund patients.
 – Best management strategies for blunt trauma and head injuries is to administer just enough fluid to maintain perfusion.
 – Rapid transport probably remains the best treatment for most trauma cases.
IV Fluid Restriction & Balanced Resuscitation

• Limitations:
 – Most studies on urban trauma patients with short transport times.
 – Findings may not be applicable to rural trauma patients.
Oxygen-Carrying IV Fluids

- Perflurocarbon emulsions
- Hemoglobin-based oxygen carrying solutions (HBOCs):
 - PolyHeme®
 - Hemopure®
HBOCs

- Hemopure®
 - Derived from bovine blood
 - Approved for use in South Africa & Russia
 - Intensive study still underway in the US.
HBOCs

<table>
<thead>
<tr>
<th>CHARACTERISTICS</th>
<th>BIOPURE’S OXYGEN THERAPEUTICS</th>
<th>RED BLOOD CELLS</th>
</tr>
</thead>
<tbody>
<tr>
<td>STORAGE</td>
<td>Room temperature (2° to 30° C)</td>
<td>Refrigerated</td>
</tr>
<tr>
<td>SHELF LIFE</td>
<td>36 months</td>
<td>42 days</td>
</tr>
<tr>
<td>PREPARATION</td>
<td>Ready to use</td>
<td>Testing, typing and crossmatching</td>
</tr>
<tr>
<td>COMPATIBILITY</td>
<td>Universal</td>
<td>Type specific</td>
</tr>
<tr>
<td>EFFECTIVENESS</td>
<td>Immediate oxygen delivery</td>
<td>Dependant on length of storage</td>
</tr>
<tr>
<td>PURITY</td>
<td>Processed to remove infectious agents</td>
<td>Tested and screened for infectious agents</td>
</tr>
<tr>
<td>RAW MATERIAL</td>
<td>Bovine hemoglobin - abundant, controlled source</td>
<td>Limited availability, not controlled</td>
</tr>
</tbody>
</table>
HBOCs

• PolyHeme®
 – Solution of chemically-modified hemoglobin derived from discarded donated human blood.
 – Hemoglobin extracted and filtered to remove impurities.
HBOCs

• PolyHeme®
 – Chemically-modified to create a polymerized form of hemoglobin designed to avoid problems previously experienced with hemoglobin-based blood substitutes:
 • Vasoconstriction
 • Renal dysfunction
 • Liver dysfunction
 • GI distress
 – Polymerized hemoglobin incorporated into a solution that contains 50 grams of hemoglobin per unit (the same as transfused blood).
HBOCs

• PolyHeme®
 – Product must be refrigerated.
 – Shelf-life is 1 year.
 – Clinical prospective randomized controlled trial of prehospital usage started Sep 2003 in several US cities (1-year, 700-800 patients).
 – Paramedics cannot be blinded for study as PolyHeme looks like blood.
 – Patients who receive PolyHeme will receive up to 6 more units if needed during the first 12 hours.
HBOCs

• California
 – UCSD (San Diego)
 – Scripps Mercy (San Diego)
• Colorado
 – Denver H&H (Denver)
• Delaware
 – Christiana (Newark)
• Illinois
 – Loyola (Chicago)
• Indiana
 – Wishard (Indianapolis)
 – Methodist Hospital (Indianapolis)
• Kentucky
 – U of K (Lexington)
• Minnesota
 – Mayo (Rochester)
• Ohio
 – Metro Health (Cleveland)
• Pennsylvania
 – Lehigh Valley (Allentown)
• Tennessee
 – UT (Memphis)
• Texas
 – Memorial-Hermann (Houston)
 – UTHSCSA (San Antonio)
• Virginia
 – Sentara (Norfolk)
 – VCU (Richmond)
HBBOCs

- Artificial polymerized hemoglobin can transport oxygen within the plasma.
HBOCs

- HBOCs look quite promising for prehospital and battlefield emergency care.
- Further recommendations await result of first prehospital study.
Helicopters

- Are EMS helicopters effective in decreasing mortality and enhancing trauma care?
Helicopters

- Initial studies in the 1980s showed that trauma patients have better outcomes when transported by helicopter.
- Today, other than speed, helicopters offer little additional care than provided by ground ambulances.
- Unless the area is geographically remote
Helicopters

- The number of medical helicopters in the United States has increased from 400 to >700 in the last 4 years.
- The UK has seen a proliferation of doctors on helicopters recently.
Helicopters (US Accidents)
Helicopters

Occupational Deaths per 100,000/year (U.S. 1995-2001)

Source: Johns Hopkins University School of Public Health
Helicopters

• An EMS helicopter (HEMS) pilot or crew member flying 20 hours/week for 20 years would have a 40% chance of a fatal crash.

• Since 2002, more people have been killed in air ambulance crashes than aboard U.S. commercial airlines, though the helicopters travel just a fraction of the distance.
Conclusions

- Helicopter transport of trauma patients may be over utilized.
- Utilization criteria must be studied and revised.
- Relatively few trauma patients benefit from helicopter transport.
- Data is probably not applicable to rural areas.
Airway Management and Thoracotomy

• And then, there is airway management and resuscitative thoracotomy. Do you have the rest of the afternoon?

• And REBOA too.....
A MAN trapped in a flooded drain died today after a dramatic battle to save his life while Britain was battered by torrential rain.
Goal

Get the *right patient* . . .

. . . to the *right place*

. . . in the *right amount of time*.
“Human factors”

• Aviation / CRM
• Drills / checklists
• Safety culture
human error factors

human accidents

Error factors

human accidents
Technology

- **www.emrs.scot.nhs.uk**
- App
- Locality guides
- Critical care numbers
EMRS Pre-Hospital Blood Transfusion Checklist

ONLY BREAK SEAL ON BLOOD BOX IMMEDIATELY PRIOR TO ADMINISTRATION OF BLOOD

<table>
<thead>
<tr>
<th>v</th>
<th>PRE-TRANSFUSION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Unseal and open box - remove unit to be transfused</td>
</tr>
<tr>
<td></td>
<td>Close box immediately once unit to be transfused has been removed and ensure vacuum seal clicked tight</td>
</tr>
<tr>
<td></td>
<td>Ensure that data logger remains in the box</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>CRC CHECKS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Check unique donation number on blood and label match</td>
</tr>
<tr>
<td></td>
<td>Confirm blood type as O negative</td>
</tr>
<tr>
<td></td>
<td>Confirmed blood not expired</td>
</tr>
<tr>
<td></td>
<td>Check blood looks normal and contains no large clots</td>
</tr>
<tr>
<td></td>
<td>Transfuse via a filtered blood giving set and the Belmont Buddy Lite</td>
</tr>
<tr>
<td></td>
<td>Administer Tranexamic Acid 1g as per Code Red SOP</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>COMMUNICATION</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Make a “Code Red” call to the receiving ED if indicated</td>
</tr>
<tr>
<td></td>
<td>Advise of Pre-Hospital transfusion during pre-alert call</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>PRIOR TO LEAVING RECEIVING HOSPITAL</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Pink labels attached to runsheet and copy handed over</td>
</tr>
<tr>
<td></td>
<td>Ensure box, unused units and logger return to base</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>v</th>
<th>ON RETURN TO BASE</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Complete Blood Box Movement Log</td>
</tr>
<tr>
<td></td>
<td>Complete Immediate Blood Use Audit Form</td>
</tr>
<tr>
<td></td>
<td>Completed blue labels in blood box with any unused units</td>
</tr>
<tr>
<td></td>
<td>Opened box should be labelled - Do not use</td>
</tr>
<tr>
<td></td>
<td>Unopened box should be labelled as before mission</td>
</tr>
</tbody>
</table>

www.emrs.scot.nhs.uk
- Shared mental models
- Bandwidth overload
- Cognitive aides
- Checklists
- Situational awareness/ task fixation
- Diagnostic bias
- Flat heirarchy
- Closed loop communication
Summary

• What happens now — **SAS, ScotSTAR EMRS**

• Pre-Hospital trauma care — **is scary**

• What should we do? — **Do no harm first**

• What is the evidence? - **Hmmm**

• Human Factors — **Don’t just pay them lip service**
Question everythiing