Let’s (Not) Talk about Sex:
Gender Awareness and Stereotype-Threat on Performance under Competition*

Nagore Iriberri† and Pedro Rey-Biel**

First version: September 2011
This version: January 2013

Abstract
We use a laboratory experiment to study how gender differences in performance under competition are affected by the provision of information regarding rivals’ gender (strong manipulation) and by priming own gender (subtle manipulation). We use two tasks which differ regarding perceptions about which gender outperforms the other. We observe women’s underperformance only under two conditions: 1) the task is perceived as favoring men and 2) rivals’ gender is explicitly mentioned. Our results are consistent with stereotype-threat.

Keywords: gender differences, competition, gender perception, stereotype-threat.

JEL classification: C72; C91; D81.

* We thank Carlos J. Gómez-Ariza for his valuable guidance in choosing the tasks, Pablo López Aguilar for programming the experimental software and Kurt Schmidheiny for valuable advice. We also thank Stefano Gagliarducci and seminar audiences for insightful comments. Nagore Iriberri acknowledges financial support from Fundación Rafael del Pino, Ministerio de Educación y Ciencia (SEJ2007-64340 and ECO2009-11213) and the support of the Barcelona GSE Research Network and the Government of Catalonia. Pedro Rey-Biel acknowledges financial support from Ministerio de Educación (ECO2009-07616), Barcelona GSE Research Network and Generalitat de Catalunya.

†Universitat Pompeu Fabra and Barcelona Graduate School of Economics. Ramón Trias Fargas 25-27, 08005 Barcelona (Spain). Tel: (+34) 935422690. E-mail: nagore.riiberri@upf.edu.

**Universitat Autònoma de Barcelona and Barcelona Graduate School of Economics. Department d’Economia i d’Història Econòmica, 08193 Bellaterra. Barcelona (Spain). Tel: (+34) 935812113. E-mail: pedro.rey@uab.es.
1. **Introduction**

Gender differences in labor market outcomes persist, being a continuous object of study among economists. In addition to the classical explanations based on gender differences in human capital and preferences, or statistical discrimination, recently, two seminal papers have proposed gender differences in competitiveness as a complementary explanation. Gneezy et al. (2003) showed that women underperform compared to men in competitive environments, referred to as gender differences in performance under competition, while Niederle and Vesterlund (2007) showed that women are more likely to avoid competitive environments than men, referred to as gender differences in tournament entry. Since labor markets are inherently competitive, these results would imply a gender gap in wages either because women may be less effective in performing in certain competitive environments or because they may be less likely to seek promotions. The importance of these results has led to abundant follow-up studies which have been reviewed in Croson and Gneezy (2009) and in Niederle and Vesterlund (2011). They point out the importance of understanding which institutions and policies mitigate the presence of gender differences in competitiveness.

This paper studies the effect of one potential institution, the provision of information to individuals before they participate in head-to-head competitions. Our aim is to understand which pieces of information activate “stereotype-threat” (Steele, 1997), defined as the concern arising from a situation where a person confirms a negative stereotype about their social group. Steele and Aronson (1995) and Ryan and Ryan (2005) argue that very subtle manipulations can activate stereotype-threat and affect performance. In particular, we combine tasks differing in perceptions regarding which gender outperforms the other with the provision of information regarding rivals’ gender or priming own gender. Our goal is to understand under which circumstances women underperform compared to men in competitive environments and whether this underperformance can be enhanced or reduced by providing or omitting gender information which may activate or deactivate stereotype-threat.

We propose a laboratory setting to test for the effects of information. In our experiment individuals perform two real effort tasks, first under a piece-rate incentive scheme and then under a competitive scheme. Although our focus is on performance in competitive environments, we control for inherent individual differences in ability using individual performance under piece-rate.
There are three different treatments in our experiment. First, in the control treatment, participants are not provided with any information before they compete. Second, in the “Rival’s Gender” treatment, we use a strong manipulation consisting in telling participants the gender of their competing rival, before they compete. Third, in the “Own Gender” treatment, we use a subtler manipulation consisting in asking participants to fill in their gender before competing, which is used to prime their own gender.

Our experiment proposes two new and distinct cognitive tasks in which perceptions regarding which gender outperforms the other are opposed. Previous research has shown that individual perceptions about whether the task favors one gender over the other are an important determinant in the emergence of gender differences in competitiveness (Günther et al., 2010; Shurchkov, 2011; Cárdenas et al., 2012).

At the end of the experiment but before they receive any feedback about their performance, we elicited incentivized measures of individuals’ confidence and their perceptions regarding each of our tasks favors one gender over the other. We also obtain demographic variables as well as non incentivized measures on individuals’ general attitudes toward competition. All these variables will be used as additional controls in our analysis.

We find that women’s relative underperformance in competitive environments not only depends on the task but also on the information provided (or omitted). Consistent with previous research, women underperform compared to men in competitive environments only when the task is perceived as a male task but not when it is perceived as a female task. That is, when competing in the task that is perceived to favor men women perform 20% lower than men, but show no underperformance when competing in the task that is perceived to favor women. More importantly we show that the information or its omission is crucial and that it interacts in non-trivial ways with perceptions about the tasks. Even when competing in the task that is perceived to favor men, the omission of information regarding gender can mitigate the underperformance of women.

First, information regarding the rival’s gender is the determinant piece of information in our experiment, making women underperform compared to men. When no information is provided we do not find evidence that women underperform compared to men. Second, we find that information on rival’s gender affects women and men very differently. In the task that is perceived to favor men, it has a positive
effect on men’s performance under competition, increasing their performance by almost 60%, but a negative effect on women’s performance when competing, reducing their performance in about 40%. On the other hand, in the task that is perceived to favor women the effect is positive for both men and women. Third, there are no differential effects depending on whether individuals are told they are competing against a male or a female rival, such that the content of the information per se does not make a differential effect, not even when we interact rivals’ gender with subjects’ own gender. What is determinant is talking or (not talking) about gender but not the actual rivals’ gender. Finally, when priming own gender we do not observe that women significantly underperform with respect to men even in the task that is perceived to favor men, although it has a positive effect for both male and female subjects in the task that is perceived to favor women. In fact, we find that women react even more positively than men in the task where they are expected to outperform men and their own gender is primed, showing that women perform even better than men in competitive environment (see section 3.3).

In order to explain where our results come from, as well as to address the possibility of experimental demand effects, which is a concern in studies using priming, we use subjects’ individual characteristics, perceptions about the tasks and attitudes toward competition as additional controls in our analysis. While there are no significant differences between men and women in standard demographics in our sample, we do observe gender differences in perceptions about tasks and attitudes towards competition. When we add these variables as additional controls, gender differences in performance become weaker as they are partially explained by these variables, which is consistent with stereotype threat. The ability of these variables to explain the strong gender effects also rules out the possibility that the gender differences were caused by pure demand effects.

Most previous studies have focused on policies and institutions that can change gender differences in tournament entry. However, women underperformance in competitive environments deserves equal attention since not only it may partially

1 For example, Cason et al. (2010), Wozniak (2010), and Ertac and Szentes (2010) show that information on relative performance differences reduces the gender gap in tournament entry. Dargnies (2011) show that gender differences in tournament entry also depend on whether competition is at the individual level or at the team level. Other papers directly manipulate the gender composition of the competing group, making it visible to participating subjects, which results in women being more likely to enter competitions among groups with a higher proportion of women (Sutter and Rützler, 2010; Booth and Nolen, 2012; Gupta et al., 2011; and Grosse and Riener, 2010). Grosse and Riener (2010) also look at different tasks which differ in perceptions about whether it is a male or neutral task.
explain labor market outcomes but it might actually be a reason why women avoid entering into competitive environments in the first place. Gneezy et al. (2003) manipulate the gender composition of the competing group, which is always visible to the subjects, and they find that women underperform in mixed gender groups but not in all female groups. Follow up studies also make the gender composition of the group visible to the participating subjects, in some experiments subjects even compete face to face (Gneezy and Rustichini, 2004; Antonovics et al., 2009; Dreber et al. 2011), or the gender of the opponent is explicitly provided as in Geraldes et al. (2010). The contribution of our paper is that our treatment design allows us precisely to study how different degrees of manipulations regarding the information on gender in combination with perceptions about which gender outperforms the other within a task, can explain gender differences in competitive environments. We show that the provision of rival’s gender explains women’s underperformance in competitive environments and that it interacts in non-trivial way with the perception of the task, activating stereotype-threat.

Our paper helps organize the existing and sometimes conflicting evidence of women’s underperformance with respect to men in competitive situations. It is precisely in environments in which women may more easily feel that rival’s gender is primed, such as in mixed competitions, and in particular when competition is head to head, where stronger results have been obtained (Gneezy et al., 2003). Similarly, strongest results have been observed in tasks typically perceived to favor men (Shih et al., 1999). We thus provide systematic evidence that when the two conditions are combined, rival’s gender is provided in a male task, is when it is more likely to observe than women underperform in competition with respect to men. Rival’s gender should not be highlighted unless the task is perceived as a female favoring task. As long as the settings allows for it, omitting explicit information regarding rival’s gender, or ultimately, making competitions gender blind, is a safe alternative as it prevents women from underperforming in competitive environments.3

The paper is organized as follows. Section 2 describes the experimental design and procedures, giving detailed information regarding the tasks and individuals’

2 The main difference from the contemporaneous work by Geraldes et al. (2010) is that they always provide the gender of the opponent and vary the information regarding the existing stereotype threat (showing fragments of scientific studies corroborating and contradicting the existent negative stereotype about women performance in performing math tasks), while our treatment variable is precisely the information regarding gender (provision of the gender of the opponent and priming of own gender).

3 Following the Lucas critique (1976), providing or omitting information might become meaningful in itself. If information regarding rivals’ gender is omitted only when the task is perceived as one that favors men, female competitors will learn information omission is bad news. Omitting this information always might be a safer recommendation.
perceptions about them. Section 3 contains the results. We first analyze the aggregate data in order to see when women underperform compared to men in competitive environments. We then compare each informational treatment with the control, where no information is provided, focusing on whether women and men react differently to the informational treatments. Finally, we extend the analysis using individual characteristics and perceptions as additional controls. Section 5 concludes with a discussion. The Appendix contains translations of the instructions and the post-experiment questionnaire.

2. Experimental Design and Procedures

Twelve experimental sessions were conducted in the Laboratori d’Economia Experimental (LEEX) at Universitat Pompeu Fabra using z-Tree experimental software (Fischbacher, 2007). A total of 240 subjects, 20 per session, were recruited using the ORSEE recruiting system (Greiner, 2004), ensuring that subjects had not participated in similar experiments in our laboratory in the past. Our recruiting method ensured that half of the subjects were men and half were women, without subjects noticing there was a gender aspect involved in the experiment. Upon arrival, subjects were called into the lab in random order and were seated in individual cubicles separated by screens. Subjects could observe that individuals of both genders were participating in the experiment but there was no special emphasis on the gender composition of the subject pool.

Each experimental session lasted one hour, including assignment of subjects to their seats and payment. Throughout the experiment we ensured anonymity and effective separation between subjects. They were paid individually and in private. All instructions appeared on screen and were read aloud to all subjects. Once the experiment had concluded, subjects filled in a voluntary questionnaire while they waited to be paid.

The experiment consisted of two tasks, which subjects performed in a sequence of four-minute periods each, first under piece-rate incentives and then under a pair-wise tournament. For piece-rate incentives, one of the two tasks was selected randomly for

4 One subject actually repeated the experiment using a different username but was identified and thus, the data from the second participation was eliminated from the analysis. One subject suffered small computer glitches during the experiment which prevented her from having the full time to perform one of the tasks. Finally, one subject submitted 0 correct responses the first time she undertook one of the tasks. For these subjects and tasks, data are omitted from the analysis, which explains the small sample size variation across treatments in the data analysis.
payment and subjects were paid 15 euro cents for each correct solution they gave in such task. For the pair-wise tournaments, subjects needed to be matched. Participants were ranked according to their performance in each of the tasks under piece-rate and then the top performer was matched with the second highest performer, the third with the fourth and so on until the participant ranked nineteenth is matched with the one ranked twentieth. Even if, as we will see later, on average men perform better under piece-rate incentives in the one task than women while in the other task performance is similar, the gender composition of the pairings using our matching protocol was as if it had occurred randomly and does not differ across treatments for both tasks (as it should be since all treatments are identical in the first two tasks of the experiment). The matching protocol was public knowledge (see instructions in the Appendix). Based on the tournament literature, Lazear and Rosen (1981), in order to study the pure effect of competition on all participants is important that the competition is similarly tight, which is ensured by our matching protocol. Also, ensuring it is public knowledge that individuals will be competing with individuals of similar ability makes the informational treatment effects harder to observe. For tournament payment, one of the two tasks was randomly chosen and the subject who performed best in each pair in such task earned 30 euro cents per correct answer, while the other subject earned nothing. Additionally, once all tasks have concluded, subjects could earn 10 euro cents per each of 16 questions rewarding predictive accuracy. Finally, subjects also earned a 3 euro participation fee. Average total payments were 13.68 euro with a large standard deviation, 6.35, due to the competitive environment.

The two tasks were chosen based on the extensive literature in Psychology regarding inherent gender differences in cognitive abilities. Our objective was to find two distinct tasks in which under piece-rate incentives each gender would perform better than the other and, at the same time, where there existed common perceptions that one gender would outperform the other. Kimura (2004) argues that consistent gender differences in abilities are hard to find and that observed differences greatly depend on the specific details of the tasks. Nevertheless, there exists a degree of consensus that

5 For the Mental Rotation Task there were 34 all-male pairings, 34-all female pairings and 52 mixed pairings. For Symbol Digit Substitution Task there were 34 all male pairings, 35 all-female pairing and 51 mixed pairings. Only in one treatment and one task (Own Gender treatment and Symbol Digit Substitution Task) the obtained gender pairing looks different from random. In such treatment we observe 13 all-male pairings, 14 all-female pairings and 13 mixed pairings.

6 Since subjects did not know until the end of the experiment if, for each task, they would be paid according to their performance under piece-rate incentives or under the tournament, independent of their attitude towards risk, they always had incentives to perform the best they could.
men are better than women at tasks involving spatial skills, while women outperform men in tasks involving certain verbal and memory skills (Kimura, 1999). In particular, for a male favoring task we chose a mental rotation task, see Shepard and Metzler (1971) for a description of the task and Maccoby and Jacklin (1974) for a review of gender differences in this task. For a female favoring task we chose a symbol digit substitution task, see Wechsler (1958) for a description of the task and see Majeres (1983) for evidence on gender differences in this task. A non-incentivized pilot experiment conducted using paper and pencil at a different university with 184 subjects of the same age prior to our main experiment confirmed that not only men outperformed women in the mental rotation task we chose and that women outperformed men at the symbol digit substitution task, but also that subjects on average expected these results when asked which gender would on average do better at each task.7

We adapted both the mental rotation and symbol digit substitution tasks to our computerized setting, which facilitated the provision of information and matching protocol. The mental rotation task (MRT) in our experiment consisted of showing pairs of three-dimensional figures to subjects who had to answer whether such figures were “identical” or “mirror” figures. Identical figures are those for which, after rotating one of them, you would get the other one. Mirror figures are those for which, no matter the number of rotations, one figure is never identical to the other one, and furthermore one is the reflection of the other figure. Figure 1 shows a pair of identical, shown in (a), and a pair of mirror images, shown in (b), from the experiment.

![Identical and Mirror Figures](image)

(a) Identical Figures
(b) Mirror Figures

Figure 1. Mental Rotation Task (MRT)

7 In our non-incentivized pilot, we gave subjects two minutes to perform each task. For the mental rotation task men on average solved 15.56 figures correctly and women did 12.21. For symbol digit substitution task men on average gave 27.65 correct answers while women gave 30.48. Both differences are significant at the 1% level. On average, subjects assigned highest frequency to the expectation that men outperform women in the mental rotation task (43%), while the opposite beliefs are obtained for the codification task (42% of subjects expected that women outperformed men).
The symbol digit substitution task (SDST) in our experiment consisted of showing subjects codes, which associated nine numbers to nine letters and subjects had to de-codify sequences of three letters into numbers. Codes were changed every nine three letter sequences, so that the task would involve both memory and codification abilities. Our SDST adapts the original symbol digit substitution task to the computerized setting by changing two dimensions. Figure 2 shows an example of one of the codes used in the experiment as well as one three letter sequence and the corresponding correct answer.

Figure 2. Code used in symbol digit substitution task (SDST) and a three letter sequence with its solution

<table>
<thead>
<tr>
<th>B</th>
<th>H</th>
<th>U</th>
<th>T</th>
<th>R</th>
<th>W</th>
<th>C</th>
<th>A</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

Three letter sequence: KHR
Correct answer: 925

Given our chosen tasks may differ in several dimensions, such as their level of difficulty, processing or available strategies, we always perform the analysis separately for each of the tasks.

Our main measure of subjects’ performance is the number of correct answers subjects give for each of the tasks. We also use the number of submitted answers and the accuracy of submitted answers, which is calculated by the proportion of correct answers out of the submitted ones. Finally, to measure performance in competitive environments, we also look at the probability of winning each respective tournament.

The experiment had three treatments, with 40 male and 40 female subjects in each treatment. In all treatments subjects perform both tasks, MRT and SDST, under a piece-rate scheme (called Tasks 1 and 2 in the experiment) and then they repeat both tasks under a tournament scheme (called Tasks 3 and 4 in the experiment). In the “Control” treatment subjects received no information regarding their rival’s gender and their gender was not primed. In the “Rival’s Gender” treatment, subjects were told the gender of their rival (“Your matched participant is a boy/girl”) before competing in each

8 Notice that when adapting this task to the computer we modified two elements. First, our codes associate numbers to letters, while in the original task codes associate numbers to symbols, and thus, subjects were asked to fill in numbers instead of symbols, since the z-tree software would only read numbers as variables. Second, sequences were presented in three letter strings instead of much longer strings commonly used. Shorter sequences allow us more precise performance measures.
task. In the “Own Gender” treatment subjects were asked to fill in their own gender “for administrative purposes” before competing in each task.

Once the four tasks concluded, subjects were given an incentivized questionnaire. This included questions regarding their number of correct answers, their relative ranking and whether women or men outperformed or not the other gender, for each task. For each correct answer subjects earned 10 euro cents. Additionally, in treatments where the information contained in such questions had not been provided in the past, subjects were asked questions regarding the gender of the rival and/or whether they believed they had outperformed or not their rival under piece-rate incentives. Finally, subjects filled in a questionnaire regarding standard demographics (gender, age, nationality, mother language and studies), and questions regarding their attitude toward competition. All these variables will be used as controls when analyzing the results. See Figure 3 for the timeline of the experiment and see the Appendix for experimental instructions and for the questionnaire.

We can now check whether our choice of tasks satisfies the inherent gender differences we had aimed for with our design. Notice that under piece-rate incentives, all three treatments are exactly the same, thus we can aggregate data (240 observations) in order to look for gender differences in each of the tasks. Figure 4 shows the cumulative distribution function (CDF) of the number of correct answers by gender in each of the tasks. For MRT, the performance by males statistically dominates the one by females (two-sample Kolmogorov-Smirnov test for equality of distribution functions yields a p-value of 0.02). However, for SDST, we cannot reject that the two cumulative distributions are equal (two-sample Kolmogorov-Smirnov test for equality of distribution functions yields a p-value of 0.12). This result differs from the results from our pilot, in which we observed that MRT was a male favoring task while SDST was a female favoring task. However, when we adapted SDST to our computerized setting this is no longer the case (see footnote 6). Canada and Brusca (1991) find that there is a
technological gender gap favoring men when tasks are computerized, which might explain the differences we find between the paper and pencil and computerized versions of this task.

Figure 4. CDF of Number of Correct Answers in MRT and SDST by Gender under Piece-Rate

More importantly, perceptions regarding which gender is favored by each task do not change when the tasks are adapted to a computerized setting. Figure 5 uses answers from the questionnaire administered after subjects concluded the experiment to graph the average frequency assigned by all subjects to each gender outperforming the other at each task under piece-rate incentives (see last question in Screen 11 of the instructions). Clearly, on average MRT is perceived to be a male favoring task while SDST is perceived to be a female favoring task, as they were perceived in the pilot.

9 Pearson’s Chi-Squared tests, where the null hypothesis is that the both frequency distributions are consistent with a uniform distribution, conclude against the null with p-values smaller than 0.01.
The design of our experiment leaves us with two interesting cases. On the one hand, we have MRT, in which men not only outperform women but there exists a consensus that this is the case and, on the other, we have SDST, where perceptions regarding a female advantage are not confirmed by performance data. This will allow us in section 3.3 to further explore the role of perceptions in explaining gender differences in performance under competition.\(^{10}\)

3. Results

3.1. Do Women Underperform in Competition?

We start by exploring whether women perform worse than men in competitive environments. As the two tasks are inherently different and the goal of the paper is testing for treatment effects, we will always analyze the two tasks separately.

First, we look at simple averages and cumulative distribution functions (CDFs), in order to evaluate whether there exist gender differences in performance across tasks and

\(^{10}\) Our measures of gender perceptions about the tasks are obtained once subjects have performed both tasks under piece-rate and tournament schemes, such that they could be interpreted as some type of ex-post justification of their individual experiences. First, notice that subjects had monetary incentives to express their true perceptions. Second, perceptions were elicited before subjects were provided with their performance results and thus only in treatments “Performance” and “Gender and Performance” subjects could have a partial indication of whether they had an ex-ante advantage with respect to their rival in each tournament. Finally, the correlation between the number of submitted responses to each task and perceiving the task as favoring the opposite gender, although negative, it is always below 0.16.
incentive-schemes, separately in the control and two treatments (80 observations per treatment), as shown in Figure 6. We draw the CDFs of the individual improvement from performing under piece-rate to competitive environment, that is, the difference between the number of correct answers in the competitive environment and the number of correct answers under the piece-rate incentive scheme. Thus, the way we measure changes in performance under competition uses an imperfect control for individual differences in ability. Two results are noteworthy in Figure 6. First, for MRT (shown in 6(a)), gender differences in improvement from piece-rate to competition are only observable in the treatments in which the rivals’ gender is provided, that is, in “Rival’s Gender”. However, we do not observe gender differences in performance under competition in the “Control” and “Own Gender” treatments. Second, for SDST (shown in 6(b)), we do not find statistically significant evidence for any gender difference. Notice in any case, that in Figure 6(b), females’ CDF lies above men’s in the “Own Gender” treatment, while, if anything, it lies below men’s in the “Rival’s Gender” treatment, possibly indicating a stronger performance enhancing effect on women than men when reinforcing own gender in the task expected to favour women. This result will be further confirmed in section 3.3, where we add additional controls.

11 One-way ANOVA test for equality of means across gender can be rejected for “Rival’s Gender” treatment but not for the “Control” and “Own Gender” treatments with p-values of 0.0019, 0.4642 and 0.7046, respectively. The Mann-Whitney test for the null hypothesis that the median of the distributions is the same across gender rejects that the male and female improvement is the same for the treatments “Rival’s Gender” but cannot reject it for the “Control” and “Own Gender” treatments with p-values of 0.0048, 0.4650, and 0.6963, respectively. In a similar way, two-sample Kolmogorov-Smirnov test for equality of distribution functions rejects that male and female improvement is the same for “Rival’s Gender” treatment but cannot reject for the other “Control” and “Own Gender” treatments with p-values of 0.097, 0.986 and 1.000, respectively.

12 One-way ANOVA test for equality of means across gender cannot be rejected for the “Control”, “Rival’s Gender” and “Own Gender” treatments with p-values of 0.7608, 0.5049 and 0.2009, respectively. The Mann-Whitney test for the null hypothesis that the median of the distributions is the same across gender cannot reject that the male and female improvement is the same for all treatments with p-values of 0.6399, 0.1506 and 0.1626, respectively. In a similar way, two-sample Kolmogorov-Smirnov test for equality of distribution functions cannot reject that male and female improvement is the same for all treatments with p-values of 0.968, 0.573 and 0.400, respectively.
Figure 6. CDF of Improvement in the Number of Correct Answers from Piece-Rate to Competition by Tasks and Treatments

Note that the results in Figures 6 only control for individual ability taking the difference between the performance in competition and the performance under piece-rate. Thus, we turn to regression analysis using performance under piece-rate incentives as control for individual ability, which we believe is the proper control. Table 1 presents results for the aggregate data. The first four columns, (1) to (4), refer to the MRT and the second four columns, (5) to (8), refer to the SDST. The table includes four performance measures as outcome variables: probability of winning, number of correctly submitted answers, number of submitted answers, and finally, the accuracy of
submitted answers, defined as the number of correct divided by the number of submitted answers. As mentioned, we control for individual ability in all regressions, which is measured by the corresponding performance variables in the piece-rate environment. For the probability of winning, the relevant control for ability is the difference between the subject’s number of correct answers and the rival’s number of correct answers when they performed each task under piece-rate. In addition to individual ability, when we pool the control and three treatment groups, we include dummy variables for each of the treatments, where the omitted group is the control group.

Table 1
Women Performance in Competition

<table>
<thead>
<tr>
<th></th>
<th>MENTAL ROTATION (MRT)</th>
<th>SYMBOL DIGIT SUBSTITUTION TASK (SDST)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Prob. of Winning (1)</td>
<td>Correct (2) Submitted (3) Accuracy (4)</td>
</tr>
<tr>
<td>(Correct_i-Correct_j) _PR</td>
<td>0.115***</td>
<td>0.151***</td>
</tr>
<tr>
<td></td>
<td>(0.0335)</td>
<td>(0.0445)</td>
</tr>
<tr>
<td>Correct_PR</td>
<td>0.849***</td>
<td>0.757***</td>
</tr>
<tr>
<td></td>
<td>(0.0437)</td>
<td>(0.0345)</td>
</tr>
<tr>
<td>Submitted_PR</td>
<td>0.666***</td>
<td>0.852***</td>
</tr>
<tr>
<td></td>
<td>(0.0417)</td>
<td>(0.0352)</td>
</tr>
<tr>
<td>Accuracy_PR</td>
<td>0.728***</td>
<td>0.0349</td>
</tr>
<tr>
<td></td>
<td>(0.0577)</td>
<td>(0.0405)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.341**</td>
<td>-0.0901</td>
</tr>
<tr>
<td></td>
<td>(0.166)</td>
<td>(0.166)</td>
</tr>
<tr>
<td>Rival’s Gender</td>
<td>-0.0256</td>
<td>-0.0901</td>
</tr>
<tr>
<td></td>
<td>(0.204)</td>
<td>(0.204)</td>
</tr>
<tr>
<td>Own_Gender</td>
<td>0.00439</td>
<td>-0.0218</td>
</tr>
<tr>
<td></td>
<td>(0.204)</td>
<td>(0.204)</td>
</tr>
<tr>
<td>Constant</td>
<td>0.262</td>
<td>0.331</td>
</tr>
<tr>
<td></td>
<td>(0.168)</td>
<td>(0.168)</td>
</tr>
<tr>
<td>Observations</td>
<td>238</td>
<td>238</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.643</td>
<td>0.679</td>
</tr>
</tbody>
</table>

Notes: The outcome variable in columns (1) and (5) is Prob. of Winning, which takes the value of 1 when the subject won or tied in the competition and 0 otherwise; in columns (2) and (6) is Correct, which measures the number of correctly solved answers under competition; in columns (3) and (7) is Submitted, which measures the number of submitted answers under competition; and finally in columns (4) and (8), is Accuracy, which is the ratio between Correct and Submitted. (Correct_i-Correct_j) _PR, measures the difference between the subject's correctly solved answers and her rival's correctly solved answers under piece rate. Correct_PR, Submitted_PR and Accuracy_PR measure the number of correctly submitted answers, correctly solved answers and the accuracy of answers when performing under piece-rate. Female is a dummy variable that takes the value of 1 when the subject is a woman and 0 otherwise, Rival_Gender is a dummy variable that takes the value of 1 when the subject is informed about her rival's gender and Own_Gender is a dummy variable that takes the value of 1 when the subject is asked to fill in their own gender. All estimations are the result of Ordinary Least Square regressions, except for columns (1) and (5), which are estimated using Probit estimator. Standard errors in parentheses, where *** denotes significant at 1%, ** denotes significant at 5%, and * denotes significant at 10%.
Table 1 shows that women clearly underperform when competing in the MRT but not in the SDST, such that, women’s underperformance is highly dependent on the task. This result is robust when looking at all four outcome variables. When competing in the MRT, women not only submit fewer answers but get fewer correct answers, the accuracy of their performance is significantly lower and as a consequence, they have a lower probability of winning compared to men. On average, after controlling for individual ability differences, women get about 20% fewer correct answers than men under competition. However, there is no evidence that women perform worse than men when competing in the SDST. Also and as expected, individual ability controls are highly significant for all performance measures with the exception of accuracy for SDST.13 From now on, we will focus on the number of correctly submitted answers, as the main outcome variable.14 Another interesting finding is that for SDST both informational treatments, “Rival’s Gender” and “Own Gender”, show higher performance than in the control group, which suggests that these treatments increase individuals’ performance.

Table 2
Women Performance in Competition by Treatment

<table>
<thead>
<tr>
<th></th>
<th>MENTAL ROTATION (MRT)</th>
<th>SYMBOL DIGIT SUBSTITUTION TASK (SDST)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Control</td>
<td>Rival’s Gender</td>
</tr>
<tr>
<td>Correct</td>
<td>Correct</td>
<td>Correct</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>\textit{Correct}_PR</td>
<td>0.899***</td>
<td>0.917***</td>
</tr>
<tr>
<td></td>
<td>(0.0787)</td>
<td>(0.0751)</td>
</tr>
<tr>
<td>\textit{Female}</td>
<td>0.581</td>
<td>-5.403***</td>
</tr>
<tr>
<td></td>
<td>(1.702)</td>
<td>(1.639)</td>
</tr>
<tr>
<td>\textit{Constant}</td>
<td>7.690***</td>
<td>10.47***</td>
</tr>
<tr>
<td></td>
<td>(2.552)</td>
<td>(2.205)</td>
</tr>
<tr>
<td>Observations</td>
<td>78</td>
<td>80</td>
</tr>
<tr>
<td>R-squared</td>
<td>0.651</td>
<td>0.684</td>
</tr>
</tbody>
</table>

\textit{Note:} The outcome variable in all regressions is Correct, which measures the number of correctly solved answers under competition. \textit{Correct}_PR measures the number of correctly submitted answers when performing under piece-rate. \textit{Female} is a dummy variable that takes the value of 1 when the subject is a woman and 0 otherwise. All estimations are the result of Ordinary Least Square regressions. Standard errors in parentheses, where *** denotes significant at 1%, ** denotes significant at 5%, and * denotes significant at 10%.

13 It turns out that individuals make very few errors in SDST. This explains that the accuracy measure under piece-rate has no power in explaining the accuracy under competition.
14 When choosing the main outcome variable among the four possible variables, we discard accuracy because it is a combination of correct and submitted answers. Between correct and submitted, a principal will always be more interested in the number of correct than in the number of submitted answers. Finally, probability of winning is only relevant under competition and it also depends on the matching protocol.
Table 2 reports estimation results separately for each of the three treatments. As before, and as columns (4) to (6) show, women do not perform worse than men when competing in the SDST. Interestingly, as columns (1) to (3) show, we can see that the underperformance of women under competition previously documented in the MRT, is now only significant in the “Rival’s Gender” treatment. In the “Control” and “Own Gender” treatments, women do not perform significantly worse compared to men in competitive environments. This shows that women’s underperformance is not only dependent on the task itself, but that it is also highly dependent on the information provided.

Two observations are noteworthy. First, a crucial difference between MRT and SDST is the perception about which gender is favoured by the task, such that, MRT is perceived as a task favouring men, while SDST is perceived as a task favouring women. Our results show that women underperform compared to men in competition only when both the task is perceived as favouring men and the information about rival’s gender (strong manipulation) is provided, such that the gender information brings subjects’ attention to their perceptions, reinforcing them. When own gender is primed (weak manipulation), we see that the effect is negative but not significant. In the case of SDST, the former condition is not satisfied given that the task is perceived as favouring women. Second, the observed treatment effect when providing rival’s gender cannot be reconciled with any learning effect because subjects in the control group face exactly the same tasks in the same sequence such that if learning effects were present they should be also present in the control.

In the following sections we will further analyze these two results, the importance of the task (in relation to perceptions) and of the provided information. In section 3.2 we will study the effect of each piece of information, separating the effect of information about rival’s gender and information on own gender, further exploring the importance of the content of such information. In Section 3.3 we will study the impact of other control variables, such as the role of perceptions.

3.2. Explaining Gender Differences in Performance through Informational Treatments

In this section we compare each informational treatment with the control. The goal is to learn if information and in particular its content regarding rival’s gender and
priming of own gender is affecting women and men differently when they perform under competition.

In each subsection, we will be looking at informational treatment effects in four different steps. We start identifying the overall treatment effect. We then proceed to see if the overall treatment effect is significantly different for women, that is, we will look for differential treatment effects based on gender. Additionally, in the case of “Rival's Gender” treatment, we further look at two more aspects. First, we control for the content of the information, such that, there might be differential treatment effects based on the content of the information. For example, when rival’s gender is provided, knowing one is competing against a man or a woman might have a different effect. Second, we will look for differential treatment effects that depend both on subjects’ gender and the content of the provided information. In all regressions we will control for individual ability using the performance variable under piece-rate.

3.2.1. Does Information about Rival's Gender affect Men and Women Differently?

In the gender informational treatment, “Rival’s Gender”, after subjects have performed under piece-rate and right before performing under competition, they were provided with information about the rival’s gender, such that they were told that either they were competing against a man or a woman. In this section we will study if this information is having any impact on subjects’ performance and whether it is affecting men and women differently.

Table 3
Informing about Rival's Gender

<table>
<thead>
<tr>
<th></th>
<th>MENTAL ROTATION (MRT)</th>
<th>SYMBOL DIGIT SUBSTITUTION TASK (SDST)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Correct</td>
<td>Correct</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Correct_PR</td>
<td>0.893***</td>
<td>0.909***</td>
</tr>
<tr>
<td></td>
<td>(0.0548)</td>
<td>(0.0542)</td>
</tr>
<tr>
<td>Female</td>
<td>-2.485**</td>
<td>0.641</td>
</tr>
<tr>
<td></td>
<td>(1.192)</td>
<td>(1.672)</td>
</tr>
<tr>
<td>Rival_Male</td>
<td>-0.325</td>
<td>-2.409</td>
</tr>
<tr>
<td></td>
<td>(1.192)</td>
<td>(1.672)</td>
</tr>
<tr>
<td>Female*Rival_Male</td>
<td>3.147</td>
<td>(3.352)</td>
</tr>
<tr>
<td>Rival's_Gender</td>
<td>0.219</td>
<td>3.273**</td>
</tr>
</tbody>
</table>
Table 3 reports the results. Columns (1) to (4) report the results for MRT, while columns (5) to (8) report the results for SDST.

We start with the results regarding MRT. In all four regressions, the ability control is positive and highly significant, as expected. Column (1) provides the estimation results for the overall treatment effect. The treatment variable, Rival’s Gender, is not significant, that is, when rival’s gender is provided performance is not different from when this information is absent. However, notice that Female is negative and significant at 5%, showing women perform significantly worse in competition than men. Now, when we look for differential treatment effects that depend on gender, shown in column (2), we clearly see that women and men are very differently affected by the information about their rival’s gender. While the effect of information regarding rivals’ gender is positive for men, it is highly negative for women, as the variable Female*Rival’s Gender, is negative and significant at 1%. Note that the variable Female now becomes non-significant which suggests that the underperformance of women is only significant when the information about rival’s gender is provided. When no information is provided and controlling for their initial ability, a woman on average correctly solves about 8 figures while a man does 7, this difference not being significant. However, when information about rival’s gender is provided and controlling for their initial ability, a woman on average correctly solves about 5 figures while a man solves 11, this difference being highly significant. In other words, the information about rival’s gender increases men’s performance when competing by 58%, while it decreases women’s performance by almost 43%.
Columns (3) and (4) study the effect of the content of the information regarding rival’s gender. We define the dummy variable, \textit{Rival_Male}, which takes the value of 1 when the rival is a man and takes the value of 0 when the rival is a woman. Column (3) reports the estimates when we control for the content of the information. The content of the information per se is not having a differential effect, as it is insignificant, while women show to underperform in competition. Finally, in column (4) we interact the content of the information with subjects’ gender. The key variable in this regression is the triple interaction, that is, \textit{Female*Rival’s_Gender*Rival_Male}, which is insignificant, meaning that the content of the gender information is not affecting male and female subjects differently. This is important as it shows that it is the provision of information about rival’s gender what affects negatively to women and positively to men, but not the actual content of the information.

We now look at SDST. Overall, the treatment variable is positive and significant at 5\%, as shown in column (5), which suggests that when the information about rival’s gender is provided performance is increased. However, there is no differential treatment effect based on gender, as the interaction term between \textit{Female} and \textit{Gender_Info}, although negative as in MRT, is now insignificant. Moreover, as it can be observed in columns (7) and (8), the treatment effect is not dependent on the content of the information, neither there are differential treatment effects based on gender and the content of the information.

To summarize, the effect of gender information affects women and men differently when performing in MRT but not in SDST. In MRT women are negatively affected by gender information while men are positively affected, the results being very strong. On the other hand, in SDST, although the sign of estimated coefficients point in the same direction, the differential negative effect for women is not significant, suggesting that both women and men are positively affected by the gender information.

3.2.2. Does Priming Own Gender affect Men and Women Differently?

In the “Own Gender” informational treatment, after subjects had performed under piece-rate and right before performing under competition, they were asked to fill in their gender “for administrative purposes” (see the Appendix for the exact instructions). In this section we study whether this subtle information manipulation has an impact on subjects’ performance and whether it affects men and women differently.
Table 4

Priming Own Gender

<table>
<thead>
<tr>
<th></th>
<th>MENTAL ROTATION TASK</th>
<th>SYMBOL DIGIT SUBSTITUTION TASK</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>(MRT)</td>
<td>(SDST)</td>
</tr>
<tr>
<td>Correct</td>
<td>Correct</td>
<td>Correct</td>
</tr>
<tr>
<td>(1)</td>
<td>(2)</td>
<td>(3)</td>
</tr>
<tr>
<td>Correct_PR</td>
<td>0.827***</td>
<td>0.828***</td>
</tr>
<tr>
<td>(0.0532)</td>
<td>(0.0532)</td>
<td>(0.0427)</td>
</tr>
<tr>
<td>Female</td>
<td>-0.715</td>
<td>0.520</td>
</tr>
<tr>
<td>(1.144)</td>
<td>(1.604)</td>
<td>(0.537)</td>
</tr>
<tr>
<td>Own_Gender</td>
<td>-0.845***</td>
<td>1.666***</td>
</tr>
<tr>
<td>(1.102)</td>
<td>(1.560)</td>
<td>(0.536)</td>
</tr>
<tr>
<td>Female*Own_Gender</td>
<td>-1.679</td>
<td>0.370</td>
</tr>
<tr>
<td>(2.206)</td>
<td>(1.078)</td>
<td></td>
</tr>
<tr>
<td>Constant</td>
<td>10.20***</td>
<td>9.910***</td>
</tr>
<tr>
<td>(1.803)</td>
<td>(1.898)</td>
<td>(1.665)</td>
</tr>
</tbody>
</table>

Observations | 158 | 158 | 158 | 158 |
R-squared | 0.635 | 0.636 | 0.691 | 0.691 |

Notes: The outcome variable in all these regressions is the correct number of submitted answers under competition. Correct_PR measures the number of correctly submitted answers when performing under piece-rate. Female is a dummy variable that takes the value of 1 when the subject is a woman and 0 otherwise and Own_Gender is a dummy variable that takes the value of 1 when the subject is asked to fill in her gender. All estimations are the result of Ordinary Least Square regressions. Standard errors in parentheses, where *** denotes significant at 1%, ** denotes significant at 5%, and * denotes significant at 10%.

Table 4 reports the results. Columns (1) and (2) report results for MRT while columns (3) and (4) report results for SDST.

We start with results regarding MRT. In the two regressions, the ability control is positive and highly significant, as expected. Also, in all regressions Female is insignificant, showing that women do not underperform compared to men in competition in the “Control” and “Own Gender” treatments. Column (1) provides the estimation results for the overall treatment effect, Own_Gender, which is insignificant. When their own gender is made salient individuals do not perform differently. Now, when we look for differential treatment effects that depend on gender, shown in column (2), we see that although the differential effect for women is higher and negative it is nonetheless insignificant. Contrary to the information on rival’s gender, we cannot conclude that priming own gender affects differently men and women.

When we look at SDST, in columns (3) and (4) consistent with the findings when rival’s gender was provided, we find that the overall treatment effect is positive and significant at the 1% level. When the task is perceived as favoring female subjects,
both male and female participants increase their performance in about 16% when their gender is made salient (weak manipulation). Furthermore, the positive effect is not significantly different for male and female subjects. However, in the next section we will show that when using additional controls, the treatment effect of priming own gender in the task perceived to favor women is actually significantly stronger for women than men, making women perform even better than men in competitive environments.

To summarize, the effect of rival’s gender information on performance under competition is only partially replicated when looking at information that makes own gender salient. In MRT, despite the suggestive evidence which points in the direction that women are affected negatively by the weak informational manipulation, the negative effect is not significant. In SDST on the other hand, priming own gender affects both men and women positively.

3.3. Explaining Differences in Performance with Other Controls: How do Women Differ from Men?

We have shown that when information regarding rival’s gender is provided women underperform under competition in MRT but not in SDST. Given we obtained data on individual characteristics during and after the experiment, we can further explore whether differences in these variables explain the effect of information on women’s underperformance.

<table>
<thead>
<tr>
<th>Table 5</th>
<th>Control Variables Separated by Male and Female Subjects</th>
</tr>
</thead>
<tbody>
<tr>
<td>Variables</td>
<td>All Subjects</td>
</tr>
<tr>
<td></td>
<td>Obs</td>
</tr>
<tr>
<td>Demographics:</td>
<td></td>
</tr>
<tr>
<td>Age</td>
<td>239</td>
</tr>
<tr>
<td>Foreign</td>
<td>239</td>
</tr>
<tr>
<td>Fields of Study:</td>
<td></td>
</tr>
<tr>
<td>Social_Sciences</td>
<td>239</td>
</tr>
<tr>
<td>Humanities</td>
<td>239</td>
</tr>
<tr>
<td>Applied_Sciences</td>
<td>239</td>
</tr>
<tr>
<td>Natural_Sciences</td>
<td>239</td>
</tr>
<tr>
<td>Other_Fields</td>
<td>239</td>
</tr>
<tr>
<td>Attitudes toward Competition:</td>
<td></td>
</tr>
<tr>
<td>Experience_Competing</td>
<td>239</td>
</tr>
<tr>
<td>Ability_Competing</td>
<td>239</td>
</tr>
<tr>
<td>Enjoy_Competing</td>
<td>239</td>
</tr>
</tbody>
</table>
Gender Perception about Tasks:

<table>
<thead>
<tr>
<th></th>
<th>MRT: Favors_Opposite_Gender</th>
<th>SDST: Favors_Opposite_Gender</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Value</td>
<td>Value</td>
</tr>
<tr>
<td>MRT: Guessed_Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.85</td>
<td>4.67</td>
</tr>
<tr>
<td>SDST: Guessed_Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>9.99</td>
<td>3.93</td>
</tr>
<tr>
<td>MRT: Confidence_Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.60</td>
<td>5.36</td>
</tr>
<tr>
<td>SDST: Confidence_Rank</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>0.54</td>
<td>5.57</td>
</tr>
</tbody>
</table>

Notes. Foreign is a dummy variable that takes the value of 1 when the subject is non-Spanish. There are five fields of study. Each of them measures the proportion of subjects studying each of the fields. Experience_Competing is a dummy variable that takes the value of 1 if the subject revealed she has actively participated in competitive activities. Ability_Competing and Enjoy_Competing measure the degree of agreement in a scale between 1 (total disagreement) and 7 (total agreement) to subjects reveal to the following statement: “I am good at/enjoy competing”. Favors_Opposite_Gender is a dummy variable that takes the value of 1 when the subject is male/female and reveals that he thinks the task favors females/males and 0 otherwise. Guessed_Rank is a variable that measures subjects' guesses about their rank (between 1 and 20, 1 representing the best rank among 20 subjects) when performing under piece-rate. Confidence_Rank is represents the difference between the actual rank and the guessed rank when performing under piece-rate. The final column represents the p-value for the Kruskal-Wallis equality-of-populations rank test with ties.

We start by looking at whether there exist differences between men and women in the control variables we obtained in the experiment. Table 5 summarizes the individual characteristics grouped in four categories for all subjects, as well as, separated by gender. The last column includes the p-values for the Kruskal-Wallis equality-of-populations rank test. The variables in the first category, demographics, were elicited in the ex-post questionnaire. They include subjects’ age, whether they are foreign or not, and their field of study, classified in five categories. We do not observe significant differences between female and male subjects, except in the proportions of subjects studying Applied and Natural Sciences, which have a low frequency in the sample. These differences go in the expected directions as we have more women studying Natural Sciences (mostly Biology) and fewer women studying Applied Sciences. The second category, attitudes toward competition, also elicited in the ex-post questionnaire, includes a dummy variable indicating whether subjects regularly participate in competitive activities (Experience_Competing), and two variables ranging from 1 to 7 (where 1 indicates subjects’ total disagreement and 7 indicates total agreement) regarding whether subjects consider they are good at competing and whether they enjoy competing. In all three variables male subjects clearly show a significantly more competitive attitude. The variables in the third category, gender perception about tasks, were elicited with monetary incentives right after subjects concluded the tasks but before they could observe any result. In particular, we define Favors_Opposite_Gender as the proportion of subjects of each gender who thinks each

15 Social Sciences include fields such as Economics and Business, Humanities include fields such as Law, Applied Sciences include fields such as Engineering, and finally Natural Sciences include fields such as Biology.
task favors the opposite gender. Two observations are worth noting. First, on average both genders perceive MRT as a male favoring task while SDST is perceived as a female favoring task, which can be clearly observed in Figure 7. Second, a higher proportion of female subjects think MRT is a male favoring task (56%) than the proportion of male subjects thinking SDST is a female favoring task (45%), such that the negative stereotype over women performing in the male task is stronger than the negative stereotype over men performing in the female task. The final category, confidence, includes two types of variables. *Guessed_Rank* is defined as subjects’ incentivized beliefs about their rank in each of the tasks, elicited after they concluded all tasks but before they observed any result. *Confidence_Rank*, used as a control variable, is defined as the difference between subjects’ actual rank in each of the tasks under piece-rate and *Guessed_Rank*. In both tasks women expect to be ranked significantly lower than men and both women and men on average believe to be ranked worse than they actually are as the confidence measures are positive. Finally, despite men showing higher average levels of confidence than women, given the high standard deviations, these differences are not significant.
In order to further explore gender differences under competition, we include all the presented variables as controls in our main regressions shown in Tables 1 and 2. Columns (1) and (5) of Table 6 replicate the regressions presented in columns (2) and (6) in Table 1 adding the additional controls. Columns (2) to (4) and columns (6) to (8) replicate the regressions in columns (1) to (3) and columns (4) to (6) in Table 2 adding the additional controls.

Table 6
Women Performance in Competition with Controls

<table>
<thead>
<tr>
<th>MENTAL ROTATION TASK (MRT)</th>
<th>SYMBOL DIGIT SUBSTITUTION TASK (SDST)</th>
</tr>
</thead>
<tbody>
<tr>
<td>All</td>
<td>Control</td>
</tr>
</tbody>
</table>
We start commenting on the results regarding MRT. In column (1) of Table 6, the dummy variable for female subjects is no longer significant while in Table 1 this variable was negative and significant at 1%. This indicates that when adding controls...
women do not underperform in competition compared to men. Four control variables show significant effects and explain the lack of significance of the female dummy. Subjects who believe they are good at competing (Ability_Competing) as well as those who are overconfident (Confidence_Rank) perform better, which is shown by the positive and significant coefficients. We have seen in Table 5 that overall women think they are worse at competing than men, and that they are less overconfident than men although not significantly, such that these two variables are in part explaining the underperformance of women compared to men when competing. Furthermore, subjects who think that the MRT favors the opposite gender perform significantly worse, which is shown by the negative and significant coefficient of Favors_Opposite_Gender. In Table 5, we also observe that in MRT it is mainly women who think that they are facing a task which favors the opposite sex, which again partly explains the underperformance of women compared to men. Finally, participants who reveal that they enjoy competing do significantly worse, which is a priori counterintuitive.\footnote{We are not aware of empirical evidence showing a positive correlation between enjoyment and performance in competitions.}

In columns (2) to (4) of Table 6 we show the regressions with additional controls separated by treatment. As in Table 2, the female dummy is significant in the treatment in which information about rivals’ gender has been provided. Compared to the regressions without controls, shown in column (3) in Table 2, the female dummy shows lower significance as shown in column (3) of Table 6, which is explained by the inclusion of the control variables. These variables are ability for competing and the perception that the task is favoring the opposite gender. As explained in the previous paragraph, it is mostly women who believe they are worse at competing and who believe they are facing a task that favors the opposite gender, such that these stereotypes are activated and mostly explain women underperformance in the MRT.

Regarding SDST, column (5) in Table 6 shows that women still do not underperform in competition when adding further controls, consistent with the results in Table 1. The four control variables we mentioned above, although they have the same sign as in the regressions for MRT, are not significant. Columns (6) to (8) replicate the regressions for each treatment, as in Table 2, but they now include the control variables. As opposed to previous regressions without controls, we now observe in column (8) that the female dummy is positive and significant in the treatment where own gender is primed. Thus, in tasks perceived to favor women, priming own gender does not result in women’s underperformance under competition with respect to men but it makes women
perform better than men. This final result reinforces the idea that information, combined with a priori perceptions about tasks, can have important effects on performance under competition.

We draw two conclusions from the addition of controls. First, we see women’s lower competitive attitudes and beliefs that the MRT task is favoring the opposite gender is partly explaining the strong effect found that when the rivals’ gender is provided women underperform in competitive environments. This is consistent with stereotype threat, that is, it is those women who believe they are worse at competing and that the task is favoring male subjects who really underperform when the rivals’ gender is primed. Second, the weakening of the strong gender underperformance found when adding the controls also rules out that the strong gender effect was due to pure experimental demand effects. If this was the case, the inclusion of controls should leave this effect unchanged, as it should be uncorrelated with individual characteristics.

4. Discussion

We find that the provision or omission of information regarding gender is crucial in understanding observed gender differences in performance under competition. Importantly, gender information interacts in no trivial ways with previously held (true or false) perceptions regarding whether one gender is more skilled at the particular task studied. We find that women’s underperformance under competition only occurs in tasks in which men are expected to outperform women and when women are explicitly told their rivals’ gender. In particular, it increases their performance by almost 60%, while it reduces women’s performance by about 40%. On the contrary, we find that women enhanced their performance as least as much as men when they believe they are better at the task than men and own gender is primed.

Our results confirm that the provision (omission) of information activates (deactivates) stereotype-threat, which has been shown to influence the performance of groups who feel they have a competitive disadvantage with respect to their opponents. Moreover, our results hint a reason why previous results about the presence of this phenomenon are so diverge: it is the combination of priming rival’s gender with negative perceptions of women’s skills on the task used which produce strongest results. A plausible explanation for our results is that providing rivals’ gender may make the presence of an opponent and competition more salient, such that two stereotypes are
activated, those regarding women lower ability to compete and those regarding the male nature of the task.

Manipulations such as omitting or emphasizing gender information can weaken or reinforce previous perceptions about gender differences at the task as well as perceptions of competitive abilities and therefore affect performance. For example, as long as it is feasible, blind competitions seem to be a safe alternative. Since in many environments this is not realistic, at least the gender composition of the competitors’ pool should not be emphasized since, making any gender information salient (strong or subtle manipulations) can translate into gender differences in competitive environments. In that respect, affirmative action policies based on gender may in fact have counterproductive effects, since while creating advantageous conditions for women they also make gender information salient. Further research about how to design competitive institutions such that women’s performance is not affected by stereotype-threat should follow. One should also consider how (possibly false) perceptions about each gender’s skills at particular tasks evolve over time. In particular, we should study the effect of correcting false preconceptions about women’s relative lower ability at jobs traditionally considered as male, when such perceptions are in fact not true.

5. References

6. **Appendix**

Experimental Instructions

Below you can find a translation of the experimental instructions (originally in Spanish) which appeared sequentially on computer screens and were read aloud by the same experimentalist in all sessions. Variations for each treatment are indicated in parenthesis.

Instructions read to all subjects.

SCREEN 1

THANK YOU FOR PARTICIPATING IN OUR EXPERIMENT!
This is an experiment and thus, no talking, looking-around or walking is allowed. If you have any question or need help please raise your hand and one of the researchers will assist you. If you do not follow the indicated rules, WE WILL ASK YOU TO LEAVE THE EXPERIMENT AND YOU WILL NOT RECEIVE ANY PAYMENT. Thank you.

Both Pompeu Fabra and Autònoma de Barcelona universities have provided funds used in this experiment. You will receive 3 euros for having arrived on time. Additionally, if you follow the instructions correctly you may earn more money.

Each participant has an "Experiment Code" determined by the number which appears on each computer terminal. As you could observe when you arrived, your number has been assigned randomly. Participants will not be able to identify each other by their decisions nor their earnings. Researchers will observe each participant’s earnings at the end of the experiment but we will not associate your decisions with any participants’ names.

The experiment consists of 4 tasks. Before each task, we will inform you about the type of decisions you will have to take and about how your decisions will affect your earnings. Everything you earn will be paid in cash and in a strictly private manner at the end of the experimental session.

Your final earnings will be the sum of the 3 euros you receive for participating plus whatever you earn in 2 of the 4 tasks of the experiment. The computer will randomly determine if you will be paid for task 1 or task 2 of the experiment. Similarly, the computer will randomly determine whether you will be paid for task 3 or task 4 of the experiment.

Press OK to continue with instructions.

SCREEN 2

Let us see two examples:

- If the computer determines that you will be paid for tasks 1 and 4 of the experiment, your earnings will be: 3 euros for your participation + your earnings in task 1 + your earnings in task 4.

- If, for example, the computer determines that you will be paid for tasks 2 and 4 of the experiment, your earnings will be: 3 euros for your participation + your earnings in task 2 + your earnings in task 4.

At the end of the experiment, the program will inform you about your results in each of the tasks, which tasks have been randomly chosen for realizing the payments and what your final earnings are.

Press the OK button in order to start with the instructions for Task 1 of the experiment.

SCREEN 3

Task 1 Instructions

In task 1 of the experiment, you will see two geometric figures, one next to each other. These figures can either be “identical” or “mirror”. Your task consists of indicating, for each pair of figures, which is the case.

1. Identical: The two geometric figures are the same, although one of them may be rotated a certain number of degrees with respect to an axis. I.e., if we rotated one of the figures we would get the other one.

 Example 1: Identical figures:
2. Mirror: The two geometric figures are different and, in fact, if we rotated one of them we would obtain a reflection of the other. I.e., if we rotated one of the figures we would never get two identical figures, because one would be the reflection of the other.

Example 2: Mirror figures:

SCREEN 4

The computer will show you, for the next 4 minutes, pairs of figures and your task will consist of identifying whether such pairs are identical or mirror figures. All participants in the experiment will see the same pairs of figures in exactly the same order. If at the end of the experiment the computer randomly chooses task 1, you will earn 15 euro cents for each correct answer.

Press OK to start with Task 1 of the experiment.

SCREEN 5

Task 2 Instructions

In task 2 you will be given some codes. Each code shows which letter of the alphabet corresponds to a number from 1 to 9. Your task consists of decoding sequences of letters, i.e., in associating numbers to letters following the given code.

For example, if the code is:

<table>
<thead>
<tr>
<th>B</th>
<th>H</th>
<th>U</th>
<th>T</th>
<th>R</th>
<th>W</th>
<th>C</th>
<th>A</th>
<th>K</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>2</td>
<td>3</td>
<td>4</td>
<td>5</td>
<td>6</td>
<td>7</td>
<td>8</td>
<td>9</td>
</tr>
</tbody>
</table>

And the sequence of letters we give you is: TWK
The correct answer would be: 469

During the next 4 minutes, the computer will show codes and sequences of letters in order for you to write the corresponding numbers. All participants in the experiment will see the exact same sequences of letters and exactly in the same order. If at the end of the experiment the computer randomly chooses task 2, you will earn 15 euro cents for each correct sequence of letters.

Press OK in order to start with task 2.

SCREEN 6

Task 3 Instructions

In task 3, you will have to do the same as in task 1; i.e., the computer will show you for the next 4 minutes pairs of figures and your task consists of identifying whether they are identical or mirror figures.
All participants in the experiment will see the same pair of figures in exactly the same order.

In this task you are matched with another participant in the experiment. Matching has been determined by the number of correct answers in task 1 of the experiment. The computer will order participants from larger to smaller number of correct answers in task 1.

Task 1

1 Participant with the highest number of correctly identified figures
2
3
4
5
6
…
18
19
20 Participant with the lowest number of correctly identified figures

Using this order, the computer will match participants in the following manner. The first with the second, the third with the fourth, the fifth with the sixth and similarly until the ninetieth participant is matched with the twentieth participant in the ranking. You will not know your position in the ranking, i.e., you will not know whether you are the 1st, 2nd … or 20th but, using this matching mechanism, it is guaranteed that the participant matched with you gave a similar number of correct answers in task 1 as you did.

When task 3 is finished, the computer will compare your number of correct answers in task 3 with the number of correct answers in task 3 of your matched participant, and earnings will depend on this comparison.

- If at the end of the experiment the computer determines you will be paid for task 3, you will earn double what you earned in task 1 for each correct answer; i.e., 30 euro cents per correct answer, whenever your number of correct answers is larger than the number of correct answers of your matched participant.
- You will earn nothing if your number of correct answers is lower than the number of correct answers of your matched participant.
- In the case of ties, each participant will earn 15 euro cents per correct answer.

Press OK in order to start with task 3 of the experiment.

(In treatment “Rival’s Gender”, before showing pairs of figures the following message appeared: “Your matched participant is a boy/girl”. In treatment “Own Gender”, before showing pairs of figures the following message appeared: “Please, fill in your gender for administrative purposes”).

SCREEN 7

Task 4 Instructions

In task 4, you will have to do the same as in task 2; i.e., the computer will show you for the next 4 minutes different codes and sequences of letters and your task consists of decoding sequences of letters; i.e., in associating numbers to letters following the given code.

All participants in the experiment will see the same codes and sequences of letters in exactly the same order.

In this task you are matched with another participant in the experiment. Matching has been determined by the number of correct answers in task 2 of the experiment. The computer will order participants from larger to smaller number of correct answers in task 2.

Task 2

1 Participant with the highest number of correctly decoded sequences
2
Participant with the lowest number of correctly decoded sequences

Using this order, the computer will match participants in the following manner. The first with the second, the third with the fourth, the fifth with the sixth and similarly until the ninetieth participant is matched with the twentieth participant in the ranking. You will not know your position in the ranking, i.e., you will not know whether you are the 1st, 2nd … or 20th but, using this matching mechanism, it is guaranteed that the participant matched with you gave a similar number of correct answers in task 2 as you did.

When task 4 is finished, the computer will compare your number of correct answers in task 4 with the number of correct answers in task 4 of your matched participant, and earnings will depend on this comparison.

- If at the end of the experiment the computer determines you will be paid for task 4, you will earn double what you earned in task 2 for each correct answer; i.e., 30 euro cents per correct answer, whenever your number of correct answers is larger than the number of correct answers of your matched participant.
- You will earn nothing if your number of correct answers is lower than the number of correct answers of your matched participant.
- In the case of ties, each participant will earn 15 euro cents per correct answer.

Press OK in order to start with task 4 of the experiment.

(In treatment “Rival’s Gender”, before showing the first code the following message appeared: “Your matched participant is a boy/girl”. In treatment “Own Gender”, before showing the first code the following message appeared: “Please, fill in your gender for administrative purposes”).

SCREENS 8 TO 11

(The following three questions were asked to all participants in all treatments for each of the four tasks once the four tasks had concluded but before showing any result to them. Subjects were paid 10 extra euro cents per correct answer.)

- How many figures (sequences of letters) do you think you have correctly identified (decoded) in task 1 (2, 3, 4)?
- Out of the 20 participants in the experimental session, what do you think is your ranking when ordering results in task 1 (2, 3, 4) of the experiment?
- Out of all participants in the experimental session, who do you think performed task 1(2, 3, 4) best? Boys/Girls/Equally

SCREEN 12

(The following four questions were asked to subjects in treatments where the information contained in such questions had not been provided in the past. Subjects were paid 10 extra euro cents per correct answer.)

- Who do you think has correctly identified more figures in task 1? Me/ My matched participant in task 3.
- Do you think you have competed against a boy or a girl in task 3?
- Who do you think has correctly decoded more sequences of letters in task 2? Me / My matched participant in task 4.
- Do you think you have competed against a boy or a girl in task 4?

Final Questionnaire
Gender:
Language:
Studies:
Year of studies:
Age:
Nationality:

- Do you take part in any type of competitive activity (cultural, Sports, Entertainment), i.e., in which you compete?

- If so, in which one?

- “I am good at competing”, please indicate your degree of agreement with this sentence, using a 1 to 7 scale. 1 means you completely disagree, while 7 means you completely agree.

- “I enjoy competing”, please indicate your degree of agreement with this sentence, using a 1 to 7 scale. 1 means you completely disagree, while 7 means you completely agree.