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Abstract

This paper studies gender differences in performance in a high stakes and male-
dominated competitive environment, expert chess. We find that women underperform
compared to equally-able men and that the gender composition of games drives this
effect. Using a unique measure of within game quality of play, we find that the gender
composition effect is driven by women playing worse against men. We also find that
men persist longer against women before resigning. Lastly, we study the effect increased
stakes and find that players’ quality of play deteriorates, though we find no differential
effect over the gender composition of games.
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‘They’re all weak, all women. They’re stupid compared to men. They shouldn’t
play chess, you know. They're like beginners. They lose every single game
against a man. There isn’t a woman player in the world I can’t give knight-odds
to and still beat.” Bobby Fischer, 1962, Harper’s Magazine

‘Chess is a mixture of sport, psychological warfare, science, and art. When you
look at all these components, man dominates. Every single component of chess
belongs to the areas of male domination.” Garry Kasparov, 2003, The Times of
London

‘Girls just don’t have the brains to play chess.” Nigel Short, 2015, The Telegraph

1 INTRODUCTION

Despite extensive research, debate and policy interventions, gender differences in labor mar-
ket outcomes persist. The unconditional gender wage gap is about 18% in OECD countries
and a non-trivial gap persists even conditional on confounding factors (Blau and Kahn,
2016). Only 1 in 7 board members in European and US companies are women. Three
traditional explanations for this phenomenon are discrimination, differences in ability and
differences in preferences for jobs (Polachek, 1981; Goldin and Rouse, 2000; Black and
Strahan, 2001). More recently, a growing interest has developed around a fourth explana-
tion: Gender differences in competition (Niederle and Vesterlund, 2011). Given that good
management practice dictates that managers ought to create competitive environments to
increase productivity (Bloom, Propper, Seiler and Van Reenen, 2015), gender differences
in competitive performance might help to explain the persistent gender wage gap and the
under-representation of women in high-powered jobs.

Results in this literature suggest that women are less responsive to competition than
men (e.g. Gneezy, Niederle, and Rustichini, 2003; Gneezy and Rustichini, 2004), and that
women ‘shy away from competition’, even when they are no less able than men (Vandegrift
and Brown 2005; Niederle and Vesterlund, 2007; Gupta, Poulsen, and Villeval, 2013) and
especially when the majority of rivals are male (Hogarth, Karelaia and Trujillo, 2012). Any
such differences seem to be social rather than innate (Gneezy, Leonard and List, 2009).
However, as Bertrand (2010) points out, at least two important questions remain unan-
swered. First, how important the gender composition of the group of competitors is for
performance. Second, how robust gender differences in competitive performance and gender
interaction effects are to higher stakes.

In this paper, we address these questions by studying a natural setting where men and
women compete on an equal footing and where stakes are high. We employ data from tens
of thousands of expert chess games played by highly skilled and dedicated players. Our first

finding is that female players obtain worse outcomes than male players of the same ability.



Second, we show that this gender performance-gap is due to the gender composition of the
match: two players of identical ability perform similarly in single gender games, whereas
female players obtain worse outcomes than male players of the same ability in mixed gender
games. We then move to explore possible explanations for this effect. We use the method
developed by Guid and Bratko (2006, 2011) to compute the quality of play of each player
in each game they play. This differs from measures of ability based on win-loss records,
as it allows us to measure how well a player plays during a particular game. We find that
the effect of the gender composition of the game on the underperformance of women is
driven largely by female players making larger errors when playing against males. This is
in contrast with male players, who play equally well regardless of the sex of the opponent.
We also find that, on average, men persist longer before resigning when playing against
a woman, decreasing the points that a female player can expect to earn against a male
opponent. These results suggest that inter-gender competition changes the behavior of both
men and women in ways that are detrimental to the performance of women. Lastly, we
study the existence of gender differences in response to increased competitive pressure. We
find that the quality of play diminishes in games with higher stakes, though we do not find
compelling evidence of heterogeneity in this effect over the gender composition of games.
Chess is an ideal testbed for the study of gender differences in competitive performance
for a number of reasons. First, it is one of the few sports in which male and female players
compete against one another. Second, as chess is ultimately a computational problem,
performance is almost exclusively a function of effort and ability. Unlike in other games,
say, poker, luck plays virtually no role. Third, there exists a standard and well-established
metric of players’ ability, the Elo rating (discussed in detail below), which allows us to
control for the relative abilities of the competitors. These ratings are publicly observable.
Consequently, players have a very good sense of where they stand relative to their opponent
at the start of the game. Thus we can largely rule out one of the main explanations for
gender differences in competitive performance, namely, gender differences in self-confidence
(Niederle and Vesterlund, 2011). Finally, our data has records of every move in each game,
not just its outcome, so we can observe the choices made by players and the circumstances
in which those choices are made. Players do not communicate directly in any way, so the
interaction between them is limited to their choices. As chess is a computational exercise
(discussed below), we can objectively assess players’ quality of play by comparing their

1 For most competitive

chosen moves with the preferred move of a powerful chess engine.
environments, sports or otherwise, such counterfactuals cannot be calculated.

Expert chess is relevant to the study of gender because it shares several important fea-

1 As a matter of fact, during competitions, commentators already employ computers to learn which next
move is a player’s best and can recognize mistakes almost immediately. See “How computers changed
chess,” The Conversation, May 2013. Available at https://theconversation.com/how-computers-changed-
chess-20772



tures with high-powered jobs and competitive professional settings. First, like boardrooms,
expert chess is a domain in where women are severely under-represented. Women make
up less than five percent of CEOQOs, less than fifteen percent of executives at Fortune 500
companies and only six percent of partners in US venture capital firms (Gino and Brooks,
2015). Comparatively, women constitute only about eleven percent of mixed-sex tourna-
ment players and two percent of Grandmasters; there is currently (March 2017) no woman
ranked among the top 100 players and there has never been a female world-champion. Sec-
ond, as the opening quotes demonstrate, negative stereotyping against females is pervasive
in high-level chess as it is in professional settings (Auster and Prasad, 2016). Third, top
chess players, like successful professionals in most other endeavors, are individuals with high
levels of cognition, determination, tenacity and dedication. Chess players, be they male or
female, have been found to be of above average intelligence (Grabner, 2014). Expert play-
ers, such as those in our sample, have generally committed between 2500 and 7500 hours
of self study (excluding coaching and group study) to achieve this level of skill (Hambrick,
Oswald, Altmann, Meinz, Gobet and Campitelli, 2014). Fourth, there is no compelling
evidence that any either gender is afforded an innate advantage in management or chess
(discussed in detail below). Lastly, expert female players, like women in highly competi-
tive professional environments, have selected into a male-dominated and very demanding
competitive environment. Given this selection, one might think it unlikely that we observe
any gender differences in performance. However, we do. The fact that we observe gender
differences among this very select group of people suggests that vulnerability to such gender
effects should be prevalent, and probably stronger, in wider domains.

Next we discuss the literature studying gender differences in competition and in chess in
particular. In Section 3, we present the data. In Section 4, we present our main result. In
Section 5, we carry out a number of robustness checks and in Section 6 we consider various

explanations for our main result. Section 7 concludes.

2 RELATED LITERATURE

GENDER AND COMPETITION

In a pioneering contribution, Gneezy et al. (2003) conducted a laboratory experiment where
subjects had to solve mazes on the Internet. They found that women performed worse
than men when the payment scheme was competitive but not under piece-rate compensa-
tion. Gneezy and Rustichini (2004) confirmed this observation in Israeli children running
competitions. Later contributions have shown that the perceived gender-bias of the task
to be performed plays an important role in this result. Giinther, Ekinci, Schwieren, and

Strobel (2010) find that females perform better than males when the task is perceived as



female-biased. Along similar lines, Shurchkov (2012) finds that females overtake men when
performing a verbal task under low-time pressure. The gender performance-gap seems also
to be driven by who women compete against. Iriberri and Rey-Biel (2016) find that showing
information about the gender of the opponent exacerbates the underperformance of women.
Although clearly valuable for their ability to control confounding factors, these experiments
leave open the question of whether the gender differences in competitive performance they
observe persist in natural settings.

The study of gender differences in performance using field competitions requires finding
appropriate conditions (e.g. observable ability, measurable competitive pressure, men and
women competing on equal footing). One fruitful avenue of research have been admissions
to selective educational programs. In these contexts, men and women compete on a level
playing field, which permits the study of differential responses to varying degrees of competi-
tion. Ors, Palomino and Peyrache (2013) compare the results of the same group of male and
female students in a less competitive high school national exam and in a very competitive
exam for entry into a selective French business school. The performance of female students
dominates the one of male students in the less competitive exam whereas the opposite holds
in the more competitive exam. A similar picture emerges from the study by Morin (2015),
who takes advantage of an educational reform in Ottawa which shortened high school by one
year. This meant that two cohorts of students graduated in the same year thus increasing
competition for university places. Morin finds that the average grades and graduation rates
of male students increased relative to those of females.

Game shows have been another avenue for the study of gender differences in competition.
Antonovics, Arcidiacono and Walsh (2009) use data from the TV trivia show The Weakest
Link. In the final round of the show, two players compete against each other. The authors
find that male contestants are more likely to answer a question correctly when they face
a female contestant than when they face another male. Using data from the game-show
Jeopardy, Lindquist and Séve-S6derbergh (2011) observe that both male and female partic-
ipants perform better when competing against men than when competing against women.
Hogarth et al. (2012) use data from the show The Player and find that the willingness to
compete of female players decreases when facing a majority of male competitors.

Put together, these contributions leave unclear the effect of the gender composition of
the set of opponents on women’s performance. One of the findings in Gneezy et al. (2003)
is that women perform as well as men in single-sex tournaments, which suggests that is
not competition that undermines women’s performance, but who they compete against.
Similarly, Booth and Yamamura (2016) find that mixed-gender competitions hurt the per-
formance of female Japanese speed boat racers. Our own findings are consistent with these
results. In contrast, Gneezy and Rustichini (2004) find that Israeli girls run faster when

competing against boys, so the gender gap in performance remains significant in single-sex



races, although it is still the case that girls have lower chances of winning when running
against a boy. On the other hand, Antonovics et al. (2009) observe that the performance
of female participants is unaffected by the gender of their opponent, whereas Lindquist and
Séve-Soderbergh (2011) observe that women obtain higher scores when competing against
men only. Our paper contributes to this debate by studying a natural setting where behav-
ior is fully observable, and by employing a unique measure of within-game performance in

addition to a well-established measure of ability.

CHESS
Chess has been studied by psychologists for years because it involves high order cognition (see
Charness (1992) for an early survey). Chess has also become a recent object of interest for
economists. The cognitive power of expert chess players, combined with the computational
nature of the game, makes chess a natural candidate for the study of strategic sophistication
(Palacios-Huerta and Volij, 2009; Levitt, List and Saddoff, 2011). More closely related to
our analysis, Gerdes and Gransmark (2010) use chess data to explore gender differences in
risk-taking behavior. They measure risk according to whether the opening moves of a game
are deemed ‘aggressive’ or ‘solid’ by a number of expert chess players and they associate
‘aggressive’ openings with risk-taking. They find that females are on average two percent
less likely to use an ‘aggressive’ opening than male players. Males are more likely to use
‘aggressive’ openings when playing against females. However, the authors also find that
‘aggressiveness’ reduces the probability of winning regardless of the gender of the opponent.
This finding ultimately falls short to explain the gender performance gap in chess.

Gransmark (2012) explores gender differences in time preferences. Again using survey
data on expert chess players, he finds that males play shorter games on average and that
they are willing to pay a higher price to end the game sooner by arranging a draw. Hence,
Gransmark (2012) concludes that males are more impatient than women. We return to the
issue of game length in our analysis below.

Three papers have specifically explored the response of female chess players to the gender
of the opponent. Using online games played in a lab, Maas, D’ettole and Cadinu (2008)
find no gender differences in outcomes when the sex of the opponent remains unknown.
Compared to that benchmark, women perform more poorly when they know they are playing
against a male opponent. When they falsely believe to be playing against a woman, gender
differences disappear again. They use data from ‘rapid’ chess games (15 minutes maximum
play time) and they do not control for the Elo rating of the participants. Rothgerber and
Wolsiefer (2014) use field data and find that females underperform when playing against a
male opponent. They again use short games (30 minutes maximum) played by elementary,

middle and high school students. Although they have information on students’ pre- and



post-game ratings, their ability measure is not as reliable as the Elo rating. The closest
paper to ours is the recent working paper by de Sousa and Hollard (2015) who also look at
the effect of inter-gender competition using data from chess tournaments. It is reassuring
that they find a gender effect as we do; women perform worse when playing against male
opponents. They go on to consider whether the effect diminishes with experience (only very
slightly) and with the Gender Gap Index of the player’s home country (not at all).

Our first results are consistent with the main findings of these papers. However, we
extend their analysis in a number of ways. First, our data come from outside of a lab
environment, enhancing the external validity of our results relative to Maas et al. (2008).
In addition, we pay particular attention to the issue of identification, and we do it in
a more formal manner than in either Rothgerber and Wolsiefer (2014) or de Sousa and
Hollard (2015). As a result, we can make a strong case that both the internal and external
validity of our results surpass those of previous studies. More importantly, we exploit a
unique measure of within game quality of play to analyze the behavioral changes induced
by changes in the gender composition of games. This allows us to disentangle whether it is
changes in the behavior of male or female players (or both) that lead to the observed effect,
and allows us to offer new insights on the nature of such effect. Lastly, we contribute to the
growing literature on gender and competitive pressure by studying the effect of the stakes of
games on players’ performance, and whether this effect varies with the gender composition
of games.

In the next section we introduce our data, with a focus on our measure of ability, the

Elo rating, and our measure of play quality.

3 DAtTA

Chess players are rigorous data collectors who systematically codify information on games
played in tournaments and share it in publicly available archives. They collect a great deal
of game information: date of the game, event at which it was played, all moves made, the
color (white or black) each player plays with, the players involved, the outcomes, the FIDE?
registration number of each player, which allows us to link the game data to information on
their gender, age and affiliated national federation, and the ability of each player at the start
of each game as measured by the Elo rating. Game data are generally stored in Portable
Game Notation (PGN) files which can be read by chess programs allowing players to review
how a particular game unfolded.

We take our data from the weekly publication ‘The Week in Chess’ (TWIC). Every

2 FIDE stands for the Fédération Internationale des Echecs or World Chess Federation which is the inter-
national governing body of chess.



Monday, TWIC publishes game data from the largest and most notable tournaments from
around the world. We use the PGN files published by TWIC for 2012 and the first six
months of 2013 giving us information from 79,242 games played by 14,056 players from 154
national federations.?

Our data set is constructed by randomly selecting a player from each game (white or
black). The selected player is our unit of observation, i or the ‘player’, and we denote the
other person as the ‘opponent’. Arranging the data in this way means we construct a panel
of player ¢ over games g = 1,..., G. We can thus control for player i fixed effects to study
the effect of within ¢ variation in game conditions, including the gender of i’s opponent, on
i’s performance.

We restrict our sample in a number of ways. Following Griansmark (2012) and Gerdes
and Gransmark (2013), we focus on expert chess players and drop those games in which ¢
has an Elo rating lower than 2000 (we keep games in which the opponent has an Elo lower
than 2000, though all our results are robust to their exclusion). We also drop games which
lasted fewer than 15 moves as we need games at least that long to compute our quality of
play variable (details below). We also exclude players who play only one game in our sample.
Our full analytic sample is therefore comprised of 57,936 games played by 7,932 players. We
define a second sample by excluding those players who only play against one gender in our
sample (all male or all female opponents) reducing our sample to 28,759 games played by
2,506 players, a sub-sample of players we call ‘switchers’. We present descriptive statistics
for male and female players in both the full and restricted sample of ‘switchers’ in Table 1.

Columns (1) and (2) are for the full sample of male and female players respectively, and
columns (3) and (4) are for the sub-sample of switchers. In our full sample, male players
earn an average of 0.53 points per game (the standard point system assigns one point for
a win, 0.5 for a draw and zero for a loss) and female players earn 0.50, a differential which

holds for switchers.*

Players and opponents are about 31 years old on average, though
females tend to be a bit younger. The degree to which chess is male dominated is apparent
with 87 percent of the players in our full sample and 80 percent in our restricted sample
being male. Note also that male players are more likely than female players to face a male

opponent, an important point we return to below.

THE ELO RATING
The availability of the Elo ratings, created by the physicist Arpad Elo (Elo, 1978), is one

of the major advantages of using chess data. The Elo is a cardinal rating of each player’s

3 These were the TWIC data available when we started working on this paper.

4 Note that the expected points for players in our sample exceeds 0.5 as we condition our sample to include
players with Elo ratings of at least 2000, while opponents may have an Elo rating below 2000.



ability as a function of the outcome of previous games played and the difference between
the player’s own Elo rating and that of the opponent in those games. The Elo rating has a
minimum score of zero and no upper bound. Players with ratings between 100 and 1999 are
classified with letters J to A in 200 point intervals. Players with Elo ratings of 2000-2199
are classified as ‘Experts”, ‘Candidate Masters’ have ratings of 2200 and over, ‘International
Masters’ ratings of 2400 and over, and ‘Grand Masters’ have ratings of 2500 and over.
There are also women’s equivalent titles, though the Elo rating thresholds are 200 points
lower than for the men’s titles and some top female players have opted not to take on such
gendered titles. Very few top players have obtained ratings of over 2700. The current world
champion, Magnus Carlsen, achieved the highest Elo score ever obtained by a human player,
2882, in May 2014. Top computer chess engines have Elo scores above 3200.°

A player’s Elo rating at the end of game g can be expressed as

FElojg1 = Eloig + K [pig — Elpigl] , (1)

where ELO;, is i’s Elo rating at the start of game g, p;; is the points the player obtains
in game g, and K is an adjustment parameter. Following the FIDE rules applying to our
sample, K =15 if the player has a rating lower than 2400 and K = 10 once a player achieves
a rating of 2400, even if her rating falls back below that threshold.® Finally,

1
Elo?ngloi,g) ’ (2)

400

Elpig] =
1+ 10(
is the so called ‘Elo curve’, that is, the points ¢ is expected to earn from a game against an
opponent with an Elo rating of Eloj, at the start of game g. As it can be seen, Elo points are
earned (lost) by performing better (worse) in a game than the Elo curve predicts. Players
always increase their Elo rating following a win and decrease it following a loss, though the
size of the change will depend on the relative Elo ratings of the player and the opponent.
The effect of a draw is positive if Elo;, < Elof, negative if Elo;g > Eloj, and neutral if
FElo;g = Elof,.

The advantage of the Elo rating is two-fold. First, regardless of the player’s subjective
assessment of her ability relative to her opponent’s, it provides an objective and publicly

known measure of that ability. Second, the Elo rating allows us to control for the relative

5 Note that the ratings of computer programs (there are two well known rating lists: SSDF list (Swedish
Chess Computer Association) and the CCRL list (Computer Chess Rating Lists)) have only be computed
through games with other computer programs and as such are an estimate. The question whether those
ratings are directly comparable to the ratings of human players is debated among computer scientists
and chess experts. However, although the 3200 Elo rating of the best computer programs is indeed an
estimate, it is generally safe to assert they are much stronger than any human player.

6 By FIDE rules, K = 25 if a player has played fewer than 30 games. Given the skill of the players in our
sample, we assume all players have played more than 30 games in the career.



abilities of the two individuals competing, a feature often absent in studies of competitions
where proxies for skill generally need to be used. An important assumption here is that
the Elo ratings of men and women are comparable. This lack of comparability might be
due to 1) the definition of the Elo rating, 2) the difference in the mean Elo ratings of male
and female players and 3) the difference between male and female players in the share of
opponents who are female. Below, we provide evidence showing that men and women with
identical Elo ratings are equally skilled.

The players in our sample are exceptionally good at chess. A rating of 2000, the lower
bound for players included in our sample, puts a player in the top five percent of all registered
FIDE players. A rating of 2350, roughly the mean for all players in our sample, puts them
in the top 0.5 percent of registered FIDE players. The mean Elo rating for male players
is 2370.06 in our full sample (2342.98 for switchers), which is about 90 Elo points higher
than the mean rating of women. Women’s opponents have lower average Elo ratings than
men’s opponents because players play opponents with similar Elo ratings (the correlation
between a player’s Elo and that of the opponent is 0.505) as the majority of events have

tiered entries, i.e. they follow the so-called Swiss system. We return to this point below.

THE QUALITY OF PLAY MEASURE

In competitive activities, rating systems are generally accepted as a way to assess the relative
skill levels of the participants. While there are numerous approaches to rating competitors
(Elo ratings being just one example), these systems tend to be based on the realized outcomes
of competitions.” Elo is a good measure of a player’s overall ability but tells us nothing
about how well a particular game is played. This distinction is important because we want to
study whether the gender composition of a game affects how well a player plays a particular
game.

Measuring within game play quality differs conceptually from studying strategic deci-
sions. Others (e.g. Gerdes and Griansmark, 2010) have sought to study the relationship
between gender and strategic choices in chess focusing on the variation in the ‘aggressive-
ness’ of play, as defined by expert players. However, chess is ultimately a computational
problem, which is precisely why computers excel at it.® The game of chess is theoretically

solvable (Schwable and Walker, 1999).° That is, there is an optimal move for any given

7 For a comprehensive overview of such ratings in chess see Glickman (1995).

8 As John von Neumann once noted ‘Chess is not a game. Chess is a well defined form of computation.’
(Bronowski, 1973).

9 While the chess game is in principle solvable, it has never been solved. According to Shannon (1950)
a typical game of 40 moves involves 10120 variations to be calculated from the first move. A computer
calculating at the ’rate of one variation per micro-second would require over 1090 years to calculate the
first move!’.



board position which can be calculated via backward induction. We can therefore construct
a counter-factual; what would have been the optimal move given the board position at a
given point in the game. Any deviation from that move, be it deemed ‘aggressive’ or oth-
erwise by a human player, is suboptimal to some degree. Therefore, we depart from the
literature that has considered more subjective, interpretive concepts such as ’style of play’
or ‘aggressive/solid move’ (how a game is played) and instead consider the quality of play
(how well a game is played).

To do so, we use a recently developed method by Guid and Bratko (2006, 2011) which
allows us to assess the quality of the move played by each player for a given board position.
The basis for this assessment is the difference between the move played by the human player
and the ‘optimal’ move as chosen by a powerful chess program.'® For the current paper
we use the powerful Houdini 1.5a x64 program which has a maximum Elo rating of 3126,
several hundred points above even the very best human players in history.'' The Elo curve
suggests this program would defeat the average player in our sample every time they played.
Following Guid and Bratko (2006, 2011), we base our quality of play variable on the analysis
of moves n = 15,..., 30, in each game g with total length N > 15 moves. We consider this
subset of moves for two reasons. First, to limit the substantial computational burden of
calculating so many moves (about 1.5 million in our full sample). Second, because we want
to focus on the middle game, which is least likely to follow an established plan as expert
players tend to study the opening moves of their opponents and practice end games in
advance. We then calculate a maximum of 32 optimal moves (technically they are called
plies, so 16 plies for the player and 16 plies for the opponent). For each of these moves, the
chess program determines its preferred move given the position on the board with a search
depth of 15 moves.'? The chess engine effectively evaluates a decision tree that extends 15
moves forward from the move in question, evaluating the best move of both the player and
the opponent at each node; this process encapsulates billions of possible board positions. It
is important to note that the move preferred by the chess engine is optimal regardless of
the quality of the opponent.'3

We measure a player’s relative advantage at a point in the game using the widely accepted

10 We put optimal in inverted commas because the move determined by the powerful chess engine may not
be the truly optimal move for a given board position since chess has not been solved yet.

1 http://www.computerchess.org.uk/ccrl /4040 /rating _list _all.html

12 While greater search depth is feasible, it rapidly increases the computational burden. In general, increasing
search depth by one move doubles the required computing time required.

13 We include a non-technical discussion of how chess engines find optimal moves in Appendix A.
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unit of measurement called centipawn. A centipawn is equal to 1/100 of a pawn.'* A player
in a given position with a score of 100 centipawns is seen as having an advantage equivalent
to having an extra pawn on the board. Our chess engine considers not only the pieces on the

board, but also the position of those pieces when calculating a players relative (dis)advantage
in terms of centipawns.!®

The quality of each move is measured by the difference between the centipawn (dis)advantage
go’mputer’
n
player>

given the n® move made by the chess engine, and the centipawn (dis)advantage

given the n** move actually made by the player, with larger differences indicating
a larger error made by the player, i.e. a more poorly played move. We measure the quality

of play for each player in each game, as the mean error committed by player i defined as

Zfl n _
n=15 computer player
erTor;y = — , (3)
: n
where (ngmputer — C;layer> > 0 and 7 = min{30, N} as some games end in fewer than

30 moves.'® We also calculate the mean error of the opponent, W. Note that larger
values of error;, indicate a more poorly played game.

Guid and Bratko (2011) considered dozens of games played by world champions, finding
a mean error of about five. We consider tens of thousands of games and find a mean error
of 16.5 (17.3 for opponents) in the full sample. As can be seen in Table 1, women commit
larger mean errors, as might be expected given their lower average Elo ratings. There is
a statistically significant negative correlation between a player’s Elo and the mean error
(p = —0.18, p-value< 0.000) suggesting better players make smaller mean errors.

As mentioned above, one concern might be that the Elo rating of a female player is not
directly comparable to that of a male; i.e. female players may be systematically better or
worse players than male players with the same Elo rating. Such measurement error could in

turn bias our results. Our measure of within-game quality of play allows us to test whether

14 For a given board configuration and a given chess engine configuration, the score in centipawns x can be
interpreted as follows:

T Translates as
x<-200 = Black is winning
-200<z<-50 = Black is clearly better
-50<z<-20 = Black is slightly better
-20<z <20 = Approximately equal

=
=
=

20<x<50 W hite is slightly better
50<x<200 W hite is clearly better
200<z W hite is winning

15 For example, rook on an open field is calculated as being worth 24 centipawns whereas a rook behind a
passed pawn (a stronger position) is calculated as being worth 40 centipawns.

16 About 17 percent of our games end in fewer than 30, but more than 15, moves. Only eight percent end in
between 15 and 25 moves and only two percent in between 15 and 20 moves.
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the Elo ratings of women are indeed comparable to those of men. While we find that women
make larger errors on average than men (see Table 1), we do not find evidence that women
make larger errors than men once we condition on Elo rating. We regress the logged mean
error on a dummy for the gender of the player using a pooled cross section of switchers
only and find a coefficient of —0.124 (se = 0.013) indicating that the average within game
error of men is about 12 percent smaller than that of women. We then add the player’s
logged Elo rating and the estimated effect of being male falls to —0.003 (se = 0.014). We
find similar results when we use the sub-sample of switchers. Moreover, the Elo elasticity
of errors is the same for male and female players indicating that the relationship between
ability and quality of play is not gender specific.!” We also find that there is no difference
between the mean error (errory) of a female-female game and that of a male-male game
once we condition on the mean Elo rating of the game (Wog).18 These results suggest that
the Elo ratings are indeed comparable across genders. Even so, in Section 5, we go a step
further and formally derive the bias that gender-correlated measurement error in the Elo

ratings migh introduce.

4 Analysis and results

GENDER AND PERFORMANCE
We first consider whether a player’s gender plays a role in determining the outcomes of
chess games. To do so, we regress the points earned from a game (one for a win, 0.5 for
a draw, zero for a loss) on the player’s gender -the effect of interest- while controlling for
Epig| as defined in equation (2) to capture the difference in ability between the player and
the opponent. We also include the age of each player and the color that i plays (white or
black) as control variables. We estimate the model using OLS on pooled data and present
results in Table 2.

In column (1), we use the full sample and in column (2) we use the sub-sample of
switchers. Female players earn about 0.01 fewer points, on average and ceteris paribus,
than their male counterparts. This simple result based on pooled data is consistent with

much of the literature in this area which finds that women underperform men in competitive

17 We regress the logged error of the player on the log of the player’s Elo rating and controls for the logged
Elo rating as well as all the controls on our main regression all interacted with the gender of the player. We
estimate this model via OLS on within-: mean differenced data. The p—value of the estimated coefficient
on the interaction of the player’s gender and the player’s logged Elo rating is 0.580. Thus we do not reject
the null that the Elo rating elasticity of errors is the same for male and female players.

18 We regress errorg on Elog and dummies for male-male games and for female-female games (the base group
being inter-gender games) and then test the equivalence of the estimated coefficients on those dummies
obtaining a p—value of 0.642. Thus we do not reject the null that errory is equal in male-male and

female-female games when we condition on Elog.
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environments. This underperformance does not, however, seem to be simply a function of a
player being female, nor can we deduce from this result that women are somehow innately
worse players than men. This is because there is another person, a male or female opponent,
sat across from the player. In columns (3) and (4), we add a control for the gender of the
opponent in game g. Results here suggest that it is not that players under or over-perform
according to their own gender, but that it is the gender composition of the game that
matters. Female players can expect to earn about 0.035 fewer points when they face a male
opponent, even after controlling for the differences in their abilities via the Elo differential
(E[pig]). Given this result, we next delve deeper in the study of the relationship between

gender composition of games and performance.

GENDER COMPOSITION AND PERFORMANCE

In the analysis that follows, we explore the importance of the gender composition of games
on the performance gender gap. To do so we exploit the panel dimension of our data and
rely on within player ¢ variation in the gender of the opponent. As players sometimes play
a man and sometimes play a women, the opponent’s gender might be conceived of as a
‘treatment’, applied in some games and not in others, the effect of which we want to study.

Any claim we make to the identification of the effect of this ‘treatment’ rests largely
on the gender composition of a game being random, i.e. the genders of the player and the
opponent being independent of one another. The advantage of laboratory experiments like
Maas et al. (2008) is that they can explicitly randomize the gender composition of games.
Because we study real competitions, we cannot randomly assign the gender composition of
games, but we can still check whether the assignment is random or at least conditionally so.

The proportion of opponents who are female in our sub-sample of switchers is 0.22.
The probability that a female player faces a female opponent is 0.61, much higher than the
probability that a male player faces a female opponent (0.12). If the gender of the opponent
were truly random, we would expect these values to match the proportion of opponents
that are female. The fact that they do not indicates that the assignment of the opponent’s
gender, and thus the gender composition of the game, is not random.

The randomness of the gender composition of games is compromised by the presence
of women-only events such as the Women’s World Chess Championship,'® and female-only
sub-events taking place at larger mixed gender events. Female players can thus select out
of playing male opponents. Moreover, many tournaments have some form of seeding or
tiers so that players of similar abilities end up playing each other. Given that men have

higher average Elo ratings, this seeding system can further contribute to the correlation

19 While there are some tournaments that include only men by chance, there are no tournaments which
exclude women as a matter of policy.
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between the gender of the player and that of the opponent. However, a strong random
component remains in the assignment of players to games because the vast majority of
tournaments employ a round robin format, i.e. players in the tournament play one another
once. Hence, players have virtually no control over who they end up playing against once
they have selected into a tournament.?? Given this random component in the assignment of
players, the genders of the player and the opponent can be conditionally independent after
controlling for both the gender composition of events and the mean Elo rating of players in
the game.?!

To test the conditional independence of the players’ genders we regress the opponent’s
gender, a dummy equal to one if the opponent is male, on the player’s gender, a dummy equal
to one if the player is male, via OLS on pooled data. If the coefficient on the player’s gender
is not different from zero, it indicates that the genders of the player and the opponent are
(conditionally) independent and that the gender composition of games is random. Results
are presented in Table 3.

In column (1), the point estimate is 0.56 (95 percent CI: 0.537 to 0.588) indicating that
a male player is 56 percentage points more likely to face a male opponent than a female
opponent. In column (2), we re-estimate the model using the sample of ‘switchers’, i.e.
only those players who play both men and women in our sample. For this sub-sample, the
coefficient on the player being male falls to 0.49 (95 percent CIL: 0.457 to 0.513). However,
when we introduce the share of other players (excluding the player and opponent in game
g) at the event who are female (column (3)) to capture the effect of women’s tournaments
and women only competitions taking place within larger tournaments, the coefficient on the
player being male falls to 0.02 (95 percent CI: -0.000 to 0.041). In column (4), we include
the mean Elo rating of the player and the opponent in game g (Wog) to account for the fact
that male players tend to have higher Elo ratings and players tend to play against opponents
of similar ability. The point estimate of the coefficient on the player being male is effectively
zero (95 percent CI: -0.020 to 0.020). In the last row of Table 3, we show the correlation and
partial correlation coefficients which tell the same story. Namely, that once we condition
on the mean Elo rating of the game and the gender composition of the event at which the
game is played, there is no evidence of a relationship between the gender of the player and
that of the opponent. We take this as evidence that, for the sub-sample of switchers, the
‘treatment’ in the form of the opponent’s gender is conditionally independent of the player’s
own gender and that the gender composition of games is conditionally random.

We next exploit this conditional randomness to estimate the effect of the opponent’s

20 As chess tournaments often have a fairly large number of competitors, these round robin tournaments are
generally of the Swiss-system variety where players play a pre-determined number of rounds, but fewer
than a true round robin tournament.

21 Given three variables z, y and z, the independence of & and y conditional on z requires that the conditional
distribution of = given y and z, p(z|y, z) does not depend on the value of y, so that p(z|y, z) = p(z|z).
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gender on a player’s performance. To do so we estimate the following model:

points;y = a; + Bmi, + 0Xi4 + ey, (4)

where points;y is the points earned by the player ¢ in game g, m{, equals one if 's opponent
is male and zero if female, 3, our parameter of interest, is the effect of the opponent’s gender
on the outcome of the game in terms of the points earned by the player, X is a vector of
controls detailed below, «; is a player ¢ fixed effect capturing time invariant individual
characteristics such as innate ability?? and preferences for an opponent’s gender that may
be correlated with X;, and/or m;’g, and e;q is a random error term with mean zero that is
assumed to be uncorrelated with X;; and m¢_, though we return to this issue below.

ig>

We estimate equation (4) using OLS on V&fithin—i mean differenced data to eliminate «;.
Our main results are presented in Table 4.

In column (1), we regress points;; on mg, only. The coefficient of -0.10 (95 percent CI:
-0.12 to -0.09) indicates that the player earns on average 0.1 percent fewer points when
the opponent is male. In column (2), we add the control vector X: the ages of the player
and the opponent, the player’s expected points as calculated in equation (2), dummies for
the opponent’s affiliated national chess federation, the color being played by the player, the
mean Elo of the player and the opponent, and the share of other players at the event who
are female. The point estimate of f falls in absolute value to -0.04 but remains statistically
significant (95 percent CI: -0.053 to -0.027). In column (3), we estimate the model using
the restricted sample in which the player plays both genders at least once (‘switchers’).
As discussed above, it is for this sub-sample that the gender composition of the game is
conditionally random. The estimated /3 remains -0.04 (95 percent CI: -0.054 to -0.027).

We then allow the effect of the opponent’s gender to differ for men and women since
so far we have been mixing two types of games in the reference category: male player vs
female opponent and female player vs female opponent. To address this, we split the sample
according to players’ gender and re-estimate equation (4). In column (4), we estimate the
model using only female ’switchers’. The magnitude of the point estimate maintains (95
percent CI: -0.080 to -0.007), i.e. females earn fewer points against male opponents. We
estimate the model for only male ’switchers’ in column (5) and find a very similar result
(95 percent CI: -0.057 to -0.028). A t-test of the equality of the B coefficients in columns
(4) and (5) returns a p-value of 0.961.23> We thus find no evidence that the effect of the
opponent’s gender differs with the gender of the player.

22 One might be concerned that the player fixed effects may not be controlling for pure ability because of
learning. This might be true, but changes in ability will be captured by the Elo rating. Moreover, the
period of observation is only 18 months, so learning will be limited by this relatively short duration.

23 We estimated a fully interacted version of equation (4). This p-value is from the t-test of the coefficient
on the interaction of the player’s and opponent’s genders being equal to zero.
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These results indicate that players earn, on average and ceteris paribus, about 0.04
fewer points when playing against a man as compared to when their opponent is a woman.
Or conversely, men earn 0.04 points more when facing a female opponent than when facing a
male opponent. This is a small but meaningful effect, comparable to women playing with a
30 Elo point handicap when facing male opponents (the standard deviation of the absolute
Elo difference between a player and opponent is 116.31). Such an effect indicates some
change in behavior when people engage in inter-gender competition. What we cannot say
from simply looking at the effect of inter-gender competition on outcomes is whether it is
the behavior of men, women or both which changes with the gender composition of games.

We study this below, but first we test the robustness of our main results from Table 4.

5 SUPPLEMENTARY ANALYSIS

In this section, we carry out supplementary analyses to test the credibility of the identifi-
cation strategy and the results above. First, we test the robustness of the primary results
to mis-specification. Second, we consider a particular mis-specification in the form of a
possibly unaccounted for non-linearity in the relationship between the outcome of the game
and the Elo differential, as controlled for by E[p;4]. Such a non-linearity might in turn be
correlated with the gender of the opponent and thus bias our results. Third, we consider
the bias arising from the measurement error in Elo ratings that a genuine gender effect, i.e.
8 # 0, would introduce.

ROBUSTNESS TO MISSPECIFICATION

To test the robustness of our results to mis-specification we follow the good practice outlined
in Athey and Imbens (2015) and re-estimate equation (4), via OLS using within-i mean
differenced data for different sub-samples. The results are presented in Table 5. In column
(1), we estimate the model excluding any games played in single sex tournaments, either
those explicitly women only, or those accidentally all male or all female. In column (2), we
follow Gerdes and Gransmark (2010) by estimating the model excluding games that ended
in a draw, and in column (3) we estimate the model using players who play at least 20
games in our sample. In column (4), we exclude blitz events and junior events. In column
(5), we replace the gender composition of the event variable (share of other players at the
tournament who are female) with event fixed effects. Lastly, in column (6) we add dummies
for the openings of games as defined by the Encyclopedia of Chess Openings as Gerdes and
Gransmark (2010) found that male players pursue ‘more aggressive’ openings when playing

a female opponent (though their results suggest that this had a negative effect on the men’s
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performance). In each case, the magnitude and statistical significance of the effect of the
opponent’s gender maintains.

In Table 6, we re-estimate equation (4) for different sub-samples defined by the Elo
differential and the Elo ratings of the players. In column (1), we include only games where
the Elo differential between the player and the opponent is less than or equal to 200 Elo
points; in column (2) we use only games where the Elo differential is less than or equal
to 100 Elo points; and in column (3) less than or equal to 50 Elo points. In column (4),
we exclude games played by players with Elo ratings less than 2200, and in column (5)
we exclude those with Elo ratings less than 2400. Again, in each case, the magnitude and

statistical significance of the result maintains.

NON-LINEARITY IN THE E[p;;]-OUTCOME RELATIONSHIP

As discussed above, women have, on average, lower Elo ratings than men, though they also
face opponents with lower average Elo ratings. However, when a female player in our sample
plays a male opponent, she faces an average disadvantage of 27 Elo points as opposed to a
mean advantage of 23 Elo points when she faces a female opponent. The Elo differential
is thus correlated with the gender of the opponent. The correlation between the opponent
being male and the E[p;4] is small but significant (p = —0.049, p-value< 0.000). We control
for the Elo differential via E[p;,] and for the mean Elo of the game with Elo,. Still, we
may be neglecting some non-linearity in the effect of the Elo differential or of Elo, on the
outcome of games. We test the robustness of our results to more general specifications of
the Elo ratings and the Elo differential using switchers only, and present the results in Table
7.

In column (1), we replace E[p;,] and Elo, in equation (4) with the logged Elo ratings of
the player and the opponent. In column (2), we replace E[p;,] and Elo, in equation (4) with
dummies for decile groups of Elo, and E[p;,]. In column (3), we add the squares and cubes
of Elog and E[p;y] to equation (4). In column (4), we include the interactions of the player
and the opponent’s logged Elo ratings with the decile groups of m and E[p;,), allowing
the effect of the logged Elo ratings to vary depending on the relative (dis)advantage of the
player and the average ability of the player and opponent in the game. In column (5), we
add a dummy equal to one if the player is at an Elo point disadvantage and zero otherwise
to our baseline specification.

It is encouraging that the estimated effect of the opponent’s gender remains markedly
stable in both magnitude and precision as we vary the specification of Elo ratings. This

suggests that our result is unlikely to be the byproduct of unaccounted for non-linearity.
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MEASUREMENT ERROR BIAS

Next, we address the issue of a potential measurement error in Elo ratings resulting from
the effect of the opponent’s gender which may bias the estimator of 5. Under the null
hypothesis that 5 = 0, the Elo rating is a reliable measure of players ability. However,
under the alternative that 5 # 0, Elo ratings would systematically measure with error the
ability of any player who plays members of the opposite sex, given that women (men) under-
(over)-perform when playing against men (women). That is, if the gender of the opponent
matters, Elo ratings would systematically mis-measure the true ability of players compared
to the case where the gender effect is absent or where players are unaware of the gender of

t.24 In particular, if women perform worse against men, even after controlling

their opponen
for Elo differentials, women’s Elo ratings would systematically under-rate their true ability
whereas men’s Elo ratings would systematically over-rate their ability. Players’ Elo ratings
would then tend to be ‘too big’ for men and ‘too small’ for women. This measurement
error in the opponent’s Elo rating would therefore be correlated with m{, and would bias
the OLS estimator of 8. In practice the measurement error might be very small, though
increasing in the share of opponents who are members of the opposite gender. As discussed
at the end of Section 3, we found no statistical evidence that Elo ratings are not comparable
across genders. Nevertheless, the above reasoning stands; in the presence of a genuine gender
effect, measurement error, small though it may be, must enter the Elo rating. The operative
question is then what the effect of that measurement error will be on our estimate of the
gender effect.

It is important to keep in mind that this measurement error, and thus the resulting
bias, would be present if and only if 8 # 0. Therefore, this measurement error cannot be
responsible for the significance of our result but it may lead us to over or underestimate
its magnitude. Here we formally derive the bias from this non-classical measurement error

problem. Consider a simplified version of our model

pointsiy = Bmg, + 07, + nig, (5)

where points;q is the points earned by player ¢, =7, is the measured Elo of the opponent,
mg, is the dummy equal to one if the opponent is male and n;4 is an error term uncorrelated
with 2, or m{ . Our problem is that z° will be measured with error such that x° = 2°* +w
where 2°% is the true Elo rating of the opponent and w is positively correlated with m7, if

B # 0.

To derive the bias in our estimator of 8 we first regress m7, on xf and obtain the

residuals, ¢. We then regress points;, on 7, and obtain the residuals, 7. Finally, we regress

7 on ¢ to obtain

24 This mis-measurement would also affect players who only play opponents of their own gender but whose
opponents’ opponents have been of the opposite sex and so on.
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B = (m'Pm)~" (m'Py), (6)

where P = I — z(2/z) ' 2/ is the symmetric idempotent matrix with Pz = 0. Restating

equation (6) gives

B = (m'Pm)~" (m'P (Bm + 6z + n — 6w)) (7)
=B+ (m'Pm)”'m/P (n — w).

Taking expectation throughout yields

E (B) =B8+FE {(m’me1 m’Pn} —0FE [(m’PmY1 m'Pw| . (8)

The second term in equation (8) equals zero as E [pm] = 0 by assumption. The third
term depends on the covariance of m and w, which is positive, and on 6, which is negative
(the points i can expect to earn in a game decrease with the Elo of the opponent). Therefore,
the bias in ﬁ is positive, i.e. towards 0. This means that our estimates of § in Table 4 can
be interpreted as lower bounds (in absolute value) of the true effect of the opponent’s gender
on i’s performance. That is, the true gender effect may be larger than what we find.

The key result here is that the bias cannot drive our finding that performance is dimin-
ished by playing against a male opponent since i) the bias is only present if there is indeed
a gender effect; and 4i) the bias is towards zero, meaning that we are underestimating, in

absolute value, the true gender effect.

6 WHY DO WOMEN UNDERPERFORM AGAINST MEN IN
CHESS?

So far we have established that players fare worse when their opponent is male. However,
we cannot say whether this is due to changes in men’s behavior, women’s behavior or both.
Moreover, the behaviours underlying this effect still remain unclear. In this section, we
first discuss three popular explanations for the underperformance of women in chess and
argue that they fail to account for the observed effect. We then explore three other explana-
tions which are consistent with the observed gender effect: variation in the quality of play,
variation in players’ willingness to compete, and variation in the response to competitive

pressure.

19



INNATE ABILITY, PRACTICE AND STRATEGY

One of the most popular explanations for the gender performance gap of expert chess players
refers to innate gender differences in key cognitive abilities. As the opening quotes demon-
strate, the perception that men are superior players persists. This view is best exemplified
by Howard (2005), who uses the substantial and persistent gender differences in Elo ratings
of the top 100 male and female players to conclude that men are inherently superior to
women in this domain. A key piece of evidence in this debate comes from Bilalic et al.
(2009) who show that the observed superiority of men in chess, as measured by the average
Elo rating of the top 100 men versus those of the top 100 women, is almost entirely due
to the fact that the highest Elo ratings in a large sample (i.e. men) are likely to be higher
than the highest values in a small sample (i.e. women). Moreover, there is no compelling
evidence that either men or women are better suited to excel at chess. Some have contended
that men’s superiority in spatial rotation tasks provides them with an advantage (Li, 2014).
Other evidence suggests that recognizing positions on chess boards is akin to recognizing
faces (Boggan, Bartlett and Krawczyk, 2012), a task at which women outperform men (Her-
litz and Lovén, 2013). But even if, in spite of the evidence, one were to believe men to be
innately superior chess players, that would not explain why women perform worse when
playing against a man, all else, including Elo, being equal.

Another potential explanation for the observed gender effect could be differences in de-
liberate practice and dedication. Chess expertise requires intense, almost obsessive, training
and constant practice and study, which can in turn interfere with child-rearing. Leaving
aside the hours of coaching they receive, top chess players accumulate on average 5,000
hours of study alone by the tenth year of their career. This figure is comparable to the level
of deliberate practice accumulated by symphony-level musicians (Charness and Gerchak,
1996). De Bruin, Smits, Rikers and Schmidt (2008) find that differences in Elo ratings are
partially explained by gender differences in the time devoted to deliberate practice (though
they fail to account for the sampling issue raised in Bilalic et al., 2009). However, they also
find that gender differences in ratings remain significant after controlling for the amount
of deliberate practice. Therefore, differentials in practice and study cannot account for the
gender performance gap between equally skilled male and female players. And again, even if
men were more dedicated chess players, that would not explain why women perform worse
against men, all else, including Elo ratings, being equal.

A third explanation for gender differences in chess is that mixed-gender games may result
in players making different strategic choices, which result in worse outcomes for women. As
discussed above, this possibility is considered in Gerdes and Gréansmark (2010) and Maas et
al. (2008). Gerdes and Gransmark (2010) find that men choose more ‘aggressive’ opening
strategies when playing against women. They find, however, that these more ‘aggressive’

strategies actually reduce the odds of men winning and thus cannot explain the performance
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gender-gap we observe. Shahade (2005) suggests that the style of play of women in the Elo
range of 2300-2500 is excessively aggressive and impatient. Maas et al. (2008) find however
that women are less likely to declare aggressive ‘intent’ at the start of games played against
a man. They also find, in contrast to Gerdes and Grinsmark (2010), that men’s declared
aggressiveness is not affected by the gender of the opponent. Unfortunately, Maas et al.
(2008) do not relate declared aggressiveness to outcomes nor use Elo ratings to control for
the ability of players. Recall also that in Table 5, column (6) we estimate our model with
dummies controlling for different openings as defined in the Encyclopedia of Chess Openings
and our estimated effect persists in magnitude and precision.

In summary, the current evidence only considers strategic variations in a single dimen-
sion, ‘aggressiveness,” as determined by the subjective interpretation of play style. Ulti-
mately, this approach fails to explain our results. For these reasons, we depart from the
approach of studying play style and instead focus on the more objectively measurable qual-
ity of play. We use the measure of within game play quality presented above to examine

whether the gender of one’s opponent affects how well a player plays.

THE EFFECT OF INTER-GENDER COMPETITION ON QUALITY OF PLAY
Although we have already discussed our quality of play measure in detail, let us reiterate
that the key element of the metric is that, unlike the Elo rating, it is not a measure of a
player’s overall ability. Rather, it captures how well a particular game was played based
on the analysis of individual moves. This allows us to determine how one’s capacity to
play chess, not just the observed outcomes, varies with the gender of one’s opponent. Our
conjecture is that the gender difference in errors is driven by the gender composition of the
game, all else being equal.

To test the impact of gender composition on the quality of play, we estimate the following

model

In (€rToriy) = 0; +ymiy + 0X;g + uig, (9)

where the dependent variable is the logged mean error committed by player ¢ in game g,
9
ages of the player and the opponent, the player’s expected points as calculated in equation

mg, equals one if i's opponent is male and zero if female, X, is a vector of controls (the
(2), dummies for the opponent’s affiliated national chess federation, the color being played
by the player, the mean Elo of the player and the opponent, and the share of other players
at the event who are female) and w;, is a random error term. The model is estimated via
OLS on within-i mean differenced data to eliminate §; using the same set of controls as in
equation (4). Results are presented in Table 8. In columns (1) and (2), we report the results

for female players (full and switchers samples, respectively) and for male players in columns
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(3) and (4) (full and switchers samples, respectively).

We find that the mean error committed by a female player between moves 15 and 30
increases by about eight percent when facing a male opponent (95 percent CI: 0.006 to 0.168
in column (1) and -0.000 to 0.168 in column (2)). This indicates that female players are
playing worse, on average and ceteris paribus, when their opponent is male. We do not find
evidence that the quality of a male player’s play is affected by the gender of the opponent.
Columns (3) and (4) show point estimates very close to, and not statistically different from,
zero. We test the equality of the effect of the opponent’s gender on the quality of play of
male and female players. Results suggest that the effect does differ for male and female
players (p-value=0.026 for the switchers sample).?

The quality of play does explain some of the observed gender effect from Table 4. When
we include the log error of the player and re-estimate equation (4) using the sample of
female switchers (equivalent to column (3) of Table 4) we find the size of the estimate (3~
0.032, 95 percent CI: -0.044 to -0.019) somewhat reduced relative to the baseline and this
reduction is statistically significant (p-value=0.006). Note that this reduction might be due
the error proxying some ability that is not completely captured by the Elo rating. We test
this by including the within-game error from the previous game played (e77or;4,_1) in place
of error;y. Since errors are positively auto-correlated, we should find a similar reduction
in the gender effect when this lagged error is included if in fact the error is measuring
ability neglected by the Elo rating. When we include the lagged error, the gender effect
is unchanged from our baseline specification (B:—0.043, 95 percent CI: -0.084 to -0.001)2¢
suggesting that the error;, is not simply some otherwise neglected measure of ability not

captured by the Elo rating.

We subject the analysis of play quality to the same robustness checks as our primary
analysis (see Tables 5, 6 and 7) and report results of these checks in Appendix B where
we find strong support for our result here: female player’s quality of play is reduced by
about eight percent when facing a male opponent, and a male player’s quality of play is not
affected by the gender of the opponent.

We next consider three explanations for the effect of male opponents on female’s quality

of play: stereotype threat, willingness to compete and the stakes of the game.

25 We estimated a fully interacted version of equation (9). This p-value is from the t-test of the coefficient
on the interaction of the player’s and opponent’s genders being equal to zero.

26 Using the lagged error like this means we lose observations, so the estimation sample used in this check
differs from that used in Table 4. We re-estimated our model using error;;, but the same estimation

sample used when we included error;, 1 and we obtain [;’:-0.0427 95 percent CI: -0.084 to -0.001.
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STEREOTYPE THREAT

Stereotype threat occurs when individuals perform worse in a task in fear of confirming
a negative stereotype applying to the group they belong to (Steele, 1997). The anxiety,
self-doubt and negative feelings that belonging to a stigmatized group generates undermine
performance, thus confirming the negative stereotype. Salience of negative stereotypes has
been shown to lead to higher heart-rate variability paired with poorer performance in tests
(Croizet, Després, Gauzins, Huguet et al., 2004), and to higher activation of brain areas
related to emotions (Krendl, Richeson, Welley and Heatherton, 2008). Stereotype threat is
thus a natural candidate to explain the observed gender effect on play quality.

Negative stereotypes about female players are very prevalent and salient in chess, as
the opening quotations demonstrate. According to stereotype threat theory, these negative
stereotypes may disrupt the cognitive capacity of females playing against males, thus reduc-
ing their quality of play. Chess requires computational effort to determine the optimal move
at each stage of the game. Given a level of innate ability, better outcomes require deeper
computation which in turn requires greater mental effort.2” As such, any disruption in the
ability to commit mental resources to the computation of the best move can manifest itself
in lower quality of play.

Stereotype threat has been shown to impair a cognitive resource key in chess: working
memory. Working memory is defined as the ability to focus the attention on a task and
to store task relevant information temporarily, whilst inhibiting task-irrelevant information
and thoughts. Robbins, Anderson, Barker, Bradley et al. (1996) introduced secondary
tasks aimed at interfering with working memory and found a detrimental effect on chess
performance. This suggests that if female players feel stereotype threat when competing
against a male player, stress, excessive self-monitoring and the need to suppress negative
thoughts and regulate anxiety might tax their working memory and harm their performance
in the game. This should naturally be reflected in our quality of play measure, as Table 8
shows.2®

The quality of play metric allows us a deeper insight. In particular, it allows us to
establish whether the gender effect described in Table 4 is consistent with stereotype threat,

that is, women playing worse when they play men, or with stereotype boost (or lift), i.e.

27 Dr. Emanuel Lasker, a German chess player, mathematician, and philosopher who was World Chess
Champion for 27 years is quoted as saying ‘When you see a good move wait - look for a better one.’.

28 Another channel by which stereotype threat can reduce chess performance is through a disruption of
spatial abilities. Wraga, Helt, Jacobs and Sullivan, (2006) used fMRI to show that stereotype threatened
females perform worse in a mental rotation task, and that this poorer performance is due to a higher
activation in brain regions associated with emotional loads. These results might be relevant for chess
because it is a visually-demanding activity. Players should keep track of the positions of a great number
of pieces and need to learn a large number of piece combinations.
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men playing better when they play women (Walton and Cohen, 2003).2° Results in Table
8 are consistent with stereotype threat but not with stereotype boost.

We cannot however, take the results in Table 8 as conclusive evidence of stereotype
threat at work. The evidence provided here is consistent with the impairment of cognitive

abilities that stereotype threat theory would predict in female chess players.

WILLINGNESS TO COMPETE

A second explanation for the reduction in females’ quality of play we observe is a decrease in
the effort or willingness to compete of female players when facing a male opponent. This may
arise from under-confidence (Niederle and Vesterlund, 2011), though we control for player
fixed effects, or from distaste for competition, especially against males (Croson and Gneezy,
2009), though women in our sample have selected into a highly competitive environment.3°
Reduction of effort is consistent with the lower quality of play that female players exhibit
when playing against males. Although we do not observe effort directly, it is possible to
study willingness to compete indirectly by looking at resignations and the length of games.

The vast majority of losses in expert chess are due to resignations, where a player con-
cedes defeat before technically losing, with only 1.2 percent of games in our sample being
played through to checkmate. These resignations could be interpreted as a reluctance to
engage in further competitive effort once the player considers that the expected outcome
of the game is not good enough to warrant the required effort to continue playing. When
deciding whether to resign or not, players perform a cost-benefit analysis. Continuing the
game at a given board position has the cost of the additional effort exerted and the benefit
of the additional expected points earned. If females are under-confident or have a distaste
for playing men, we would expect them to resign more quickly, i.e. in fewer moves, when
playing against a male opponent, all else being equal.

Our interest is whether the gender of the opponent affects the length of a game. The
average game in our sample lasts 43 moves. On average, the longest games are female-
female games with an average number of moves of 45.9. Male-male games are shorter, only
42.6 moves on average. Mixed gender games fall in between at 43.3 moves per game on
average. To formally test whether a player’s willingness to compete is a function of the
gender of their opponent we identify those games in which player i resigns and we calculate
the total number of moves. We then regress the logged number of moves in game g where

the player has resigned on the same set of controls as in equation (4) plus the logged quality

29 Several studies show that performance can increase among the positively stereotyped group at the same
time as performance decreases for the negatively stereotyped group (Wraga et al., 2006).

30 Using survey data, Kleinjans (2009) finds that, controlling for ability and family background, the median
female expresses greater distaste for competition than the median male. Female’s stronger distaste for
competition lowers their educational attainment relative to that of male.
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of play of both the player and the opponent (In (error;y) and In (ng)). Results are
presented in Table 9. In columns (1) and (2), we report the results for female players (full
and switchers samples, respectively) and for male players in columns (3) and (4) (full and
switchers samples, respectively).

We do not find compelling evidence that the gender of the opponent affects female
players’ readiness to resign, i.e. no reduction in willingness to compete. The point estimates
in columns (1) and (2) are negative, but the confidence intervals are too wide for meaningful
inference (95 percent CI: -0.114 to 0.037 in column (1) and -0.112 to 0.045 in column (2)).
The evidence suggests that men, however, resign in about eight percent fewer moves against
a male opponent (95 percent CI: -0.115 to -0.032 in column (3) and -0.122 to -0.038 in
column (4)), though we cannot reject the equality of this effect for male and female players
(p-value=0.297).3! That men resign in more moves against women suggests an additional
explanation for the observed gender effect: an extra willingness of men to compete against
women.

One possibility is that men know that women are more error prone when playing male
opponents. As a result, males may play longer against a female opponent, holding out for
the woman to make a larger error than a male opponent would. Were this the case, however,
we should also expect that women, knowing that they make larger errors against men, resign
more quickly against a male opponent. But we find no evidence of this.

An alternative explanation might be that men’s increased willingness to compete stems
from a psychological cost to men of losing to a woman. In the case of chess, anecdotal

1.32 If that is the case, given two identical

evidence suggests that such cost may be very rea
board positions, and two opponents of the same ability and who are playing equally well, a
male player will be more likely to continue playing against a female opponent than against
a male opponent.?® By persisting longer in a disadvantaged situation, i.e. ‘dragging it out’,
a male player facing a female opponent maintains a non-zero probability of forcing a draw

or even winning the game thus earning, on average, more points against a female opponent

31 We estimated a fully interacted version of the model. The p-value reported here is from the t-test of the
coefficient on the interaction of the player’s and opponent’s genders being equal to zero.

32 American essayist Charles Dudley Warner famously quoted that ‘There is nothing that disgusts a man

like getting beaten at chess by a woman.”. Much more recently, in the thread ‘Do men dislike losing to
women, if so why?’ in the Chess.com forum, a user writes: ‘I’ve found male players will drag it out to the
last minute, even when it’s clear they should resign, or are in check or about to be mated, they will still
wait one day or three days before moving, why is this, it’s so annoying.’.

33 Consider a simple illustration. For a male player, the payoff from resigning to a man is zero. If the player

decides to continue the game, his expected payoff in terms of the outcome of the game is E[p|pos™] — e,
where e is the effort of continuing the game, and E[p|pos™] > 0 is his expected points given the board
position at move n of the game. A male player will resign against a male opponent if e > E[p|pos™].
Now suppose the payoff to the same man of resigning to a woman is —c¢, where ¢ is a psychological cost
of losing to a woman. A male player will then resign against a female opponent if e — ¢ > FE[p|pos™]. In
other words, ceteris paribus, the E[p|pos™] required for a male player to resign against a woman is lower
than the E[p|pos™] required for him to resign against a man.
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than he would against a male opponent all else equal. This, of course, means that female
players in these games earn, on average, fewer points as a result.

The two explanations described above, stereotype threat and willingness to compete,
suggest that the gender composition of a competition affects the behavior of both male
and female competitors. Women tend to play worse when facing a male opponent, all else
being equal. Men are less willing to yield when facing a female opponent. While the two
explanations are very different, they both serve to diminish the competitive outcomes of

female competitors.

Do THE STAKES OF THE GAME MATTER?

The differential effect of the gender composition of games on women’s quality of play can-
not be due to differences in monetary stakes between single and mixed-gender tournaments.
Female-only tournaments tend to have lower prizes.?* Hence, it cannot be the case that fe-
male players make fewer errors against female opponents just because expected-prize money
is higher in these tournaments. Still, let us explore a third explanation related to the stakes
of games. This explanation is based on the emerging evidence showing that gender dif-
ferences in competitive performance might be due to differential responses to competitive
pressure. For example, using data from Grand Slam tennis tournaments, Paserman (2010)
finds that both men and women show a substantial deterioration in performance as points
become more important, and that women, not men, increase the ratio of unforced errors to
winning shots as stakes increase. Jurajda and Munich (2011) and Ors et al. (2013) study
the effect of stakes on performance in the context of college admissions. Jurajda and Miinich
(2011) use data from different university entry exams taken by the same individuals and
find that women underperform men in the access to top universities but not elsewhere. Sim-
ilarly, Ors et al. (2013) find that females perform worse than males in the entrance exam
for the very selective HEC Paris despite having performed better in the less competitive
Baccalaureat exam.

If, as this literature suggests, the competitive performance of women deteriorates with
competitive pressure more than men’s, and the competitive pressure in mix gender games is
higher than in single gender games, the combination of these two effects could be responsible
for the lower quality of play of women when playing against men. We next explore this
possibility.

How to measure stakes in chess? Most tournaments have a prize fund from which mon-
etary prizes are awarded. In some tournaments, there are special prizes for younger or

females players. Variability in monetary stakes is thus large. Given that most tournaments

34 For example, the overall winner of the 2017 Women’s World Chess Championship takes home $450,000.
The winner of the 2017 Chess World Cup, open to men and women, will earn $1.6 million.
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are round robin rather than elimination competitions, one would need very detailed infor-
mation on the order in which a player faces his or her opponents in order to asses accurately
the monetary relevance of each single game; unfortunately, this information is generally not
available.

However, chess games have another type of stakes: the potential gain or loss in Elo
rating. Changes in Elo ratings are important for both economic and psychological reasons.
The economic reason is that organizers and sponsors of competitions use Elo ratings to chose
the field of participants.?® Highly-rated players can also demand substantial appearance fees.
The psychological importance of ratings has to do with status. The Elo rating provides an
absolute measure of ability that players can use to asses their own quality and to measure
themselves against others. Traditionally, FIDE updated the world ranking of players twice a
year. Today, a number of websites provide rankings updated in real time.?® Many threads in
chess forums contain debates and discussions about various approaches to increasing one’s
Elo rating, and on whether the much prevalent obsession with ratings in expert chess is
counterproductive for one’s game.?” Hence, a player’s expected gain or loss of Elo points is
a good proxy for his/her stakes in a particular game, and it is therefore a relatively good
measure of competitive pressure.

We study whether the Elo points at stake in a particular game affect the quality of play.
To calculate the Elo points at stake we follow equation (2) in determining the expected
points of the game where, again, a win is worth one point (not Elo points), a draw worth 0.5
and a loss worth zero. This does not, however, allow us to directly calculate the expected
Elo points at stake in the game. The change in the player’s Elo from equation (1) is
K [pig — Epig)], but this depends on the actual outcome of the game, p;;. A player at an
Elo disadvantage will gain more Elo points from winning the game than she will lose from
losing the game. The same player will gain points from a draw, while a player with an Elo
advantage will lose points from a draw with a lower rated player.

Therefore, to calculate the expected Elo points from a game, we need to estimate the
probability distribution over outcomes. The stakes of the game will be based on the expec-
tation that the player will win (), lose (m;) or draw (7). The estimates of these outcome

probabilities must be empirical rather than analytical, i.e. cannot be based on E[p;,].%®

35 Elo ratings play an important role in team championships. Many professional and semi-professional players
earn a substantial part of their salaries as players on teams in national leagues and invitations to join
such teams are based largely on Elo rating. The same applies to national teams competing internationally
where only few players (there are two national teams: male and female) are invited.

36 See http://www.2700chess.com/ for one example.

37 See, for instance, ‘Obsessed with ratings’ in Chess.com https://www.chess.com/forum/view/general /obsessed-
with-ratings.

38 The Elo curve described in equation (2) is the way in which FIDE computes the expected points of a
player in a game. Hence, it does not need to coincide with the empirical expectation. If they did, players’
expected gain/loss from a game would be zero.
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We estimate m,,, m; and 74 non-parametrically using a large dataset of about 1.5 million
games played between 1900 and 2008.3° We use this larger, secondary data source so that
we can produce highly accurate estimates of m,,, 7; and m43. We need this because the actual
probability distribution over these outcomes varies with the level of Elo. For example, the
probability of a game played between players in the bottom decile of our Elo distribution
ending in a draw is 0.25, whereas the probability of a game played by players in the top decile
ending in a draw is nearly double, 0.48. To account for this, we construct mean Elo rating
(ﬁog) percentile groups and also Elo difference (Eloig - Elog’g) percentile groups. We then
calculate m,,, m; and m, for the intersections of each of these, giving us 1000 estimates of
these probabilities over both mean Elo rating and Elo difference. Using these probabilities

we construct a new variable, stakes, defined as

stakes;q = |K(0.5%ig.a + Tig.w — Epig))], (10)

which is the absolute value of the expected Elo points to be earned or lost by player ¢ in game
g and 4., and ;4 4 are the estimated probabilities of winning and drawing for the Elo
differential-mean Elo percentile group intersection in which game ¢ is located. This stakes
variable is our measure of the stakes of the game. On average, there are just over two Elo
points at stake, though stakes in inter-gender games are slightly higher (2.2 for males and
2.4 for females) than in single gender games (1.9 for female-female and 1.7 for male-male).
Hence, if as we have conjectured, females’ competitive performance deteriorates more than
males’ as competitive pressure increases, the increased stakes in mix gender games could
contribute to explain the detrimental effect of gender composition on the women’s quality
of play.

It is the impact of stakes on the quality of play that we are interested in. To examine
this we include the log of the stakes variable into our model of quality of play in equation
(9) and re-estimate the model via OLS with player ¢ mean differenced data using switchers
only. Results are presented in Table 10. In column (1), we present the result for female
players. Larger stakes do increase the mean error committed by female players, though the
effect seems small: a ten percent increase in the stakes leads to a 0.34 percent increase in the
mean error. This is consistent with results in Paserman (2010). In column (2), we interact
log stakes with the gender of ¢’s opponent for female players and report the marginal effects
of the logged stakes from this interaction. While the point estimate of the coefficient on the
interaction is positive, indicating that the effect of the stakes on play quality may be larger
when the opponent is male, it is not statistically significant (p-value=0.292).

The stakes also affect the quality of play of male players (column (3)) with a ten percent

39 These are from a database of PGN files stored at http://www.top-5000.nl/pgn.htm. No FIDE registration
numbers are available in this data set, so we could not carry out the above analysis with it as we cannot
identify the gender of players.
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increase in the stakes leading to a 0.3 percent decrease in quality of play. The difference
with the point estimate for women is not statistically significant (p-value=0.385). In column
(4), we again interact the logged stakes with the gender of the opponent. We do not find
statistical evidence that the effect of the stakes of the game for male players depends on the
gender of the opponent (p-value=0.615). These results suggest that competitive pressure
does have a detrimental effect on play quality, though we are unable to convincingly detect

any heterogeneity in that effect over the gender composition of games.

7 CONCLUSIONS

In this paper, we study gender differences in competitive performance in a real world set-
ting. We use data from tens of thousands of chess games played by thousands of expert
players. Like women in high-power jobs, expert female chess players have selected into a
male dominated and highly competitive arena. This sample selection is to our advantage.
We study a population that is less likely to experience gender differences in willingness to
compete than a randomly selected sample. Although, as in the laboratory, this may come at
the cost of external validity, we identify gender effects in a real world setting where selection
might mitigate these effects.

We test for the presence of a gender performance-gap, first by looking at the performance
of players by gender. Our results are consistent with previous literature showing that females
perform worse than males of comparable ability in competitive settings. Then we show that
this underperformance is driven by the gender composition of games. Our results show that
women earn about 0.04 fewer points when their opponent is male, even when we control
for player fixed effects, the ages and the skill levels (as measured by the Elo rating) of the
players involved.

We then study possible explanations for the observed results. In doing this, we choose
not to consider changes in strategic choices. We have doubts about whether it is at all
possible to identify strategic variation in a meaningful way by looking at the early phases
of the game. In the famous ‘Game of the Century’ played in 1956 between a 13 year-old
Bobby Fischer and Donald Byrne, Fischer shockingly lost his queen early on, a move that
was seen as a mistake by observers. Only later in the game did it become clear that the
sacrifice was a brilliant piece of strategy by Fischer that led almost inexorably to his victory.
Systematically codifying and rating moves in a game with so much variation, and where a
player’s strategy may not become clear to lesser players until much later, is a formidable
task and one we believe cannot be done in an analytically useful manner, at least in the
framework of the current paper.

Instead, we employ a unique measure of within-game quality of play developed in Guid

and Bratko (2006, 2011). Unlike the Elo rating, which is a function of all previous games,
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this measure of quality of play compares the moves actually played within the game to the
moves a powerful chess engine would have made in the same position. The distance between
these two moves is a measure of the error committed by the player. Moreover, this measure
focuses on the middle-game where, unlike for openings, creativity and improvisation are key.
We study whether this error is a function of the gender composition of the game. Doing
so allows us to test whether the gender effect is the product of women playing worse when
they play against men or of men playing better when they play against women.

The results show that the mean error committed by women is about eight percent larger
when they play against a male and this may be a conservative estimate of the actual effect.
This suggests that the variation in the quality of play explains some portion of the gender
effect on outcomes. We interpret this result in the light of the stereotype threat literature.
The differential response of errors to the gender of the opponent may operate via a reduction
in the cognitive ability of female players facing male opponents. There is no evidence
of stereotype boost affecting men. We do find, however, that men resign more quickly
(after fewer moves) against other men than they do against women. It seems that men
continue playing against women even when they would resign were they playing against
men. This persistence, this willingness to continue competing against female opponents, is
also consistent with the observed gender effect.

We finally consider the effect of competitive pressure as measured by the Elo points at
stake in the game. This is unlikely to be the only source of variation in competitive pressure
affecting players in a particular tournament, but we do not observe tournament round or
prize money at stake, other potential sources of such pressure. We find evidence that an
increase in the degree of competitive pressure as measured by the Elo point stakes of the
game undermines play quality of both men and women to a similar degree. Future research
might consider whether this effect might depend on the gender composition of competitions,
though we do not find persuasive evidence for such heterogeneity here.

We believe we have provided compelling evidence of the presence of gender effects in
competition in a sample of expert chess players. Our results suggest that the introduction
of blind competitions at high level chess tournaments might be a desirable intervention.
Blind auditions have shown to have a very positive effect on the representation of women in
top orchestras (Goldin and Rouse, 2000). Perhaps more important is the fact that women in
our sample have achieved a level of mastery in chess. If the effects we observe are present for
such a selected sample, it seems reasonable to assume that they will be operating at least as
strongly in a more general population. Further research should look into what approaches

might be employed to mitigate this effect.
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Tables

Table 1: Descriptive statistics

(1) 2 () (4) (5) (6)
Full sample Switchers
Men  Women Dif Men  Women Dif
Dig 0.53 0.50  0.04%** 0.56 0.51  0.06%**
(0.41)  (0.42) (0.01) (0.40)  (0.42) (0.01)
Players’s age 32.59 25.31  7.22%%* 31.37 25.14  6.17%FF*
(14.57)  (9.32) (0.170) (14.13)  (8.56) (0.20)
Opponents’s age 31.96 27.78  4.19%** 30.56 27.73  2.82%*%*
(14.67)  (12:29) (0.17) (14.04)  (12.14) (0.20)
Opponent is male 0.94 0.38  0.56%** 0.87 0.39 0.48%**
(0.24)  (0.49) (0.00) (0.33)  (0.49) (0.01)
Player’s Elo 2370.06  2278.99 91.76*** 2409.62  2294.21 116.09***
(186.35) (147.01) (2.22) (174.93) (140.81)  (2.50)
Opponent’s Elo 2333.34  2274.46  59.18%** 2347.98  2283.26  65.02%**
(251.11)  (206.53) (3.00) (234.57)  (204.19) (3.39)
Player’s error 16.48 1771 -1.24%*%* 15.63 17.30 -1.76%**
(20.74)  (21.73) (0.25) (19.88)  (21.27) (0.29)
Opponent’s error 17.31 17.70 -0.39 17.17 17.58 -0.41
(22.26)  (22.23) (0.27) (22.26)  (22.29) (0.32)
Observations 50221 7715 23064 5695

Notes: Columns (1) and (2) show the means and standard deviations from the full sample for men and

women, respectively. Columns (4) and (5) show the means and standard deviations from the sub-sample of

players who play both men and women in our sample (‘switchers’). Columns (3) and (6) show the difference

between the means for men and women (and the standard errors.

differneces according to the following schedule: *** 1%, ** 5% and * 10%.
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Table 2: Gender and performance

(1)

(2)

(3)

(4)

Full sample  Switchers Full sample Switchers
Player is female -0.010%* -0.010* -0.023%** -0.021°%**
(0.005) (0.006) (0.006) (0.006)
Opponent is female 0.022%*** 0.021***
(0.005) (0.006)
Total effect
Female-Female 0.001 0.001
(0.005) (0.006)
Games 57,936 28,759 57,936 28,759
R? 0.212 0.217 0.213 0.218

Notes: The dependent variable is the number of points earned by ¢ in the game: 1 for a win, 0.5 for a draw
and O for a loss. The models are estimated by OLS on pooled data. Controls include the Elo differnetial,
the ages of each player and the color 7 plays with. Robust standard errors (in brackets) are clustered at the
player level. Stars indicate statistical significance according to the following schedule: *** 1%, ** 5% and
*10%.

Table 3: Is the gender of the opponent conditionally independent of the player’s gender?

(1) (2) (3) (4)

No controls Switchers +Female share +W09
Player is male 0.563%** 0.485*%**  0.020* 0.000

(0.013) (0.014) (0.010) (0.010)
Games 57,936 28,759 28,759 28,759
R? 0.313 0.215 0.410 0.425
(Partial) p 0.559 0.463 0.247 0.000

Notes: The dependent variable is a dummy equal to 1 if the opponent is male. The share of non-i players
who are female at the event is added in column (2). In column (3), we exclude players who only do not play
against both men and women in our sample. In column (4), we use this same sub-sample and add the mean
Elo rating of the player and opponent as a control. The models are estimated by OLS using pooled data.
Robust standard errors (in brackets) are clustered at the player level. Stars indicate statistical significance
according to the following schedule: *** 1%, ** 5% and * 10%.
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Table 4: Effect of the gender of the opponent on performance

(1) (2) 3) (4) ()
Univariate Controls  Switchers Female players Male players
Opponent is male -0.102***  -0.040*** -0.040*** -0.043** -0.042%**
(0.007) (0.007) (0.007) (0.019) (0.007)
Games 57,936 57,936 28,759 5,695 23,064
R? 0.004 0.239 0.238 0.229 0.246

Notes: The dependent variable is the number of points earned by 7 in the game: 1 for a win, 0.5 for a draw
and 0 for a loss. The models are estimated by OLS on within-i mean differenced data. Robust standard
errors (in brackets) are clustered at the player level. Stars indicate statistical significance according to the

following schedule: *** 1%, ** 5% and * 10%.

Table 5: Robustness checks, different sub-samples I

(1) (2) (3) (4) (5) (6)
No single sex No draws >20 games No Blitz or Event FE = Openings FE
events played Junior
Opponent is male -0.041%** -0.044%FF%  -(0.032%** -0.041%%* -0.039%F*  _0.040%**
(0.007) (0.009) (0.010) (0.007) (0.007) (0.007)
Games 24,331 19,399 18,169 27,770 28,759 28,759
R? 0.247 0.299 0.236 0.241 0.263 0.239

Notes: The dependent variable is the number of points earned by ¢ in the game: 1 for a win, 0.5 for a draw
and O for a loss. The models are estimated by OLS on within-i mean differenced data. Robust standard
errors (in brackets) are clustered at the player level. Stars indicate statistical significance according to the

following schedule: *** 1%, ** 5% and * 10%.

Table 6: Robustness checks, different sub-samples 11

(1) (2) (3) (4) (5)

[Elo dif[ <200 |Elo dif| <100 |Elo dif|<50 Elo>2200 Elo>2400
Opponent is male -0.033*** -0.052%** -0.057* -0.035%*%*  _0.039***

(0.010) (0.017) (0.030) (0.008)  (0.010)
Games 19,534 9,587 4,585 23,795 14,407
R? 0.150 0.079 0.069 0.242 0.235

Notes: The dependent variable is the number of points earned by ¢ in the game: 1 for a win, 0.5 for a draw
and O for a loss. The models are estimated by OLS on player within-i differenced data. Robust standard
errors (in brackets) are clustered at the player level. Stars indicate statistical significance according to the

following schedule: *** 1%, ** 5% and * 10%.
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Table 7: Non-linearity in the effect of Elo differential

(1) (2) (3) (4) (5)
Elo, and E[p;,]

Logged Elo  Decile Squares, Interacted Intercept

ratings groups cubes shift
Opponent is male -0.045%** -0.038%*F*%  _0.036***  -0.030***  -0.034***

(0.007) (0.007) (0.007) (0.007) (0.007)
Games 28,759 28,759 28,759 28,759 28,759
R? 0.228 0.239 0.242 0.247 0.239

Notes: The dependent variable is the number of points earned by ¢ in the game: 1 for a win, 0.5 for a draw
and O for a loss. The models are estimated by OLS on within-i mean differenced data. Robust standard
errors (in brackets) are clustered at the player level. Stars indicate statistical significance according to the

following schedule: *** 1%, ** 5% and * 10%.

Table 8: Modeling the within-game quality of play

(1) (2) (3) (4)

Women Men
All Switchers All Switchers
Opponent is male  0.087**  (0.084* -0.017  -0.001
(0.041)  (0.043) (0.020)  (0.020)
Games 7,715 5,695 50,221 23,064
R? 0.022 0.024 0.005 0.008

Notes: The dependent variable is the logged mean error committed by ¢ in between moves 15 and 30 of
game g. The models are estimated by OLS on within-i mean differenced data. Robust standard errors (in
brackets) are clustered at the player level. Stars indicate statistical significance according to the following
schedule: *** 1%, ** 5% and * 10%.

Table 9: Number of moves until resignation

(1) (2) (3) (4)

Women Men
All Switchers All Switchers
jis male -0.0564  -0.033 -0.074%*%*  _0.080***
(0.037)  (0.040) (0.021) (0.022)
Games 2,220 1,605 12,801 5,274
R? 0.131 0.150 0.060 0.067

Notes: The dependent variable is the number of moves of games ended with resgination. The models are
estimated by OLS on within-i mean differenced data using only games which i lost. Robust standard errors
(in brackets) are clustered at the player level. Stars indicate statistical significance according to the following
schedule: *** 1%, ** 5% and * 10%.

38



Table 10: Quality of play and stakes

(1) (2) (3) (4)
Women Men
Log stakes 0.034*** 0.029***
(0.012) (0.007)
Opponent is male 0.079* 0.071 -0.000 -0.017
(0.043)  (0.058) (0.020)  (0.027)
Marginal effects
Log stakes| opponent is female 0.030%** 0.035
(0.015) (0.023)
Log stakes| opponent is male 0.042** 0.028%**
(0.019) (0.007)
Games 5,695 5,695 23,064 23,064
R? 0.011 0.026 0.030 0.030

Notes: The dependent variable is the logged mean error committed by ¢ in between moves 15 and 30 of
game g. The models are estimated by OLS on within-i mean differenced data. Robust standard errors (in
brackets) are clustered at the player level. Stars indicate statistical significance according to the following
schedule: *** 1%, ** 5% and * 10%.
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For Online Publication

Appendix A: How chess engines determine ‘best’ moves

For the current paper, we use the Houdini 1.5a x64 program which according to the CCRL
rating has an Elo rating of 3126, several hundred points above the very best human players
in history. This rating is, however, based on games with other computer programs, and the
question whether it is comparable to the ratings of human players is not easy to answer,
due to the lack of matches where humans play against top performing computer matches
under standard chess tournament conditions. There are nevertheless several indicators that
top computer chess programs — including the one we use — are much stronger than any
human player. In contrast to humans, they: (1) have an enormous computing power, (2)
use numerical values as evaluations, (3) adhere to the same rules all the time, and (4) are
not influenced by emotions. Computer programs therefore have a capability of being more
consistent than human observers, and can deal with incomparably more observations in
a limited time. Since 2005, chess programs have defeated several grandmasters and even
former world champions. In 2009, a computer chess program running on a mobile phone
won a strong chess tournament “Copa Mercosur” with a performance rating of 2898 Elo
points. The program searched about 20,000 positions per second, which is at least an order
of magnitude less than the program that we use in this paper.

As mentioned in the main text, we consider 16 moves for each player between moves 15
and 30 of each game. Chess has an estimated state-space complexity of 10 to the power of 46.
That is why we limit the search depth of Houdini to 15, meaning the program evaluates 15
moves forward from the move being evaluated. Such limits are necessary given the number
of moves we wished to evaluate and the fact that going one move deeper often means
double the computation required. Recent work in Ferreira (2013) estimates that Houdini
1.5a x64 at a search depth of 15 plies has an estimated Elo rating of 2563 (a grandmaster
level), meaning there are players in our data who in fact have a higher Elo than the chess
engine we use to evaluate moves. However, as noted by Guid and Bratko (2006), “even if
[the computer’s| evaluations are not always perfect, for our analysis they just need to be
sufficiently accurate on average since small occasional errors cancel out through statistical
averaging”. Moreover, as noted earlier, the machines perform exceptionally well against
human players. Nevertheless, we can show that our results are robust to the exclusion of
players with Elo ratings in excess of 2563.

Houdini, as other chess programs, uses search trees to find and choose the best possible
move. The root of the search tree is the player’s current position on the board, nodes
are chess positions, links between nodes represent chess moves, and leaves are the terminal

positions of the tree. Because we limit the extent of computations, the leaves do not represent
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final positions, but the positions at the maximum depth of search.

When exploring search trees, Houdini determines the value of a starting point and chooses
the best move. This exploration involves assigning evaluations to individual leaves and nodes
in the constructed trees, employing a depth-first search. An evaluation function is used for
this purpose, but only to assess the value of the leaves, while nodes are assessed on the basis
of their immediate descendants, i.e. the leaves and nodes that their connections lead to.

Houdini employs the mini — max concept, assuming that whatever is good for one player
must consequently be bad for the other one. The root of a search tree is labeled as MAX,
all nodes to which its connections lead as MIN, and then its descendants again as MAX,

and so on. Evaluations are assigned as follows:

1. Nodes marked as MIN are given the lowest evaluation of their descendants.

2. Nodes marked as MAX are given the highest evaluation of their descendants.

The program thus evaluates, from the bottom up, all nodes in subtrees that are formed
directly from the tree’s root, which results in the final value of the root. This value is the
ultimate assessment of the current position, and the move that leads to the root’s descendant
with the highest evaluation is chosen as the best move. We discarded moves with too low or
too high evaluations because in those cases players have a decisive (dis)advantage and often
choose not to play the best move, but rather a move which is ‘good enough’ or which give
a chance to save the game later on. Early in the game, players might choose less optimal
moves in order to avoid a certain opening, but making deliberately worse moves in the phase

of the game we analyse would only decrease chances of success.
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Appendix B: Supplementary quality of play analysis

Table 11: Supplementary quality of play analysis: Different sub-samples 1

(1) (2) (3) (4) (5)
No single sex No draws >20 games No Blitz or Event FE  Openings FE
events played Junior
Female players
Opponent is male  0.075* 0.095* 0.168*** 0.079* 0.095* 0.082*
(0.045) (0.050) (0.058) (0.043) (0.050) (0.072)
Games 4349 4022 3828 5542 5695 5695
R? 0.033 0.041 0.028 0.025 0.079 0.042
Male players
Opponent is male  0.002 0.028 -0.042 -0.000 0.005 -0.003
(0.021) (0.025) (0.027) (0.021) (0.021) (0.020)
Games 19982 15377 14341 22228 23064 23064
R? 0.009 0.016 0.013 0.009 0.043 0.034

Notes: The dependent variable is the logged mean error committed by 7 in between moves 15 and 30 of
game g. The models are estimated by OLS on within-i mean differenced data. Robust standard errors (in
brackets) are clustered at the player level. Stars indicate statistical significance according to the following
schedule: *** 1%, ** 5% and * 10%.

Table 12: Supplementary quality of play analysis: Different sub-samples II

(1) (2) (3) (4) (5) (6)

|Elo dif| <200 |Elo dif|<100 |Elo dif|<50 Elo>2200 Elo>2400 Elo<2536

Female players

Opponent is male  0.084* 0.084* 0.084* 0.115**  0.181* 0.079*
(0.043) (0.043) (0.043) (0.050)  (0.093)  (0.044)

Games 5695 5695 5695 4158 1396 5475

R? 0.024 0.024 0.024 0.025 0.046 0.024

Male players

Opponent is male -0.001 ~0.001 -0.001 0.025  -0.042  0.031
(0.020) (0.020) (0.020) (0.023)  (0.031)  (0.022)

Games 23064 23064 23064 19637 13011 16869

R? 0.008 0.008 0.008 0.011 0.018 0.010

Notes: The dependent variable is the logged mean error committed by ¢ in between moves 15 and 30 of
game g. The models are estimated by OLS on within-i mean differenced data. Robust standard errors (in
brackets) are clustered at the player level. Stars indicate statistical significance according to the following
schedule: *** 1%, ** 5% and * 10%.
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Table 13: Supplementary quality of play analysis: Non-linearity in the effect of Elo differ-

ential

(1) (2) (3) (4) ()
Eloy and Elp;]
Logged Elo Decile  Squares, Interacted Intercept
ratings groups cubes shift
Female players
Opponent is male  0.082* 0.077*  0.066 0.060 0.084*
(0.043) (0.043) (0.043) (0.043) (0.043)
Games 5695 5695 5695 5695 5695
R? 0.024 0.028 0.027 0.038 0.024
Male players
Opponent is male 0.003 0.005 0.004 0.007 -0.001
(0.020) (0.020)  (0.020) (0.020) (0.020)
Games 23064 23064 23064 23064 23064
R? 0.009 0.011 0.013 0.016 0.008

Notes: The dependent variable is the logged mean error committed by ¢ in between moves 15 and 30 of

game g. The models are estimated by OLS on within-i mean differenced data. Robust standard errors (in

brackets) are clustered at the player level. Stars indicate statistical significance according to the following
schedule: *** 1%, ** 5% and * 10%.
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