A study of breath metabolome in Non-Alcoholic Fatty Liver Disease

Sinha R1, Lockman KA2, Homer N3, Bower E4, Brinkman P5, Knobel HH6, Chamuleau RAFM7, Jaap AJ8, Hayes PC9, Plevis JN1

1Hepatology Laboratory and Centre of Liver and Digestive Diseases, Royal Infirmary of Edinburgh and The University of Edinburgh, UK
2Edinburgh Centre for Endocrinology & Diabetes, Royal Infirmary of Edinburgh and The University of Edinburgh, UK
3Edinburgh Clinical Research Facility Mass Spectrometry Core, The University of Edinburgh, UK
4Department of Respiratory Medicine, Academic Medical Centre, University of Amsterdam, The Netherlands
5Philips Lighting, Eindhoven, The Netherlands
6Surgical Laboratory and Tytiet Institute for Liver and Intestinal Research, Academic Medical Centre, University of Amsterdam, The Netherlands

BACKGROUND ANDAIMS

Breath-omics is gaining popularity as a method for non-invasive measure of biomarkers for various diseases. Breath metabolome is a multitude of volatile organic compounds (VOCs) reflecting pathological metabolic processes. The purpose of this study was to compare breath VOCs in patients with non-alcoholic fatty liver disease (NAFLD) and healthy controls.

METHOD

Breath samples were collected from well-characterized NAFLD patients; a) NAFLD cirrhotic (n=15), b) NAFLD non-cirrhotic (n=15) and c) self-declared healthy subjects (n=15). VOCs were identified using mass spectrometry; comprising of abundant and trace compounds. The mass spectra of each compound were matched in the chromatogram and further identified using AMDIS® software. The peak automatically integrated using Xcalibur®. Data were analysed by non-parametric ANOVA (Kruskal-Wallis) and Dunns post-hoc. Receiver Operating Characteristic (ROC) curves were used to determine the diagnostic accuracy of the volatiles compound.

RESULTS

Body mass index adjusted exhaled breath levels of acetone, dimethyl sulphide, d-limonene, were significantly higher (p<0.001, p<0.01, p=0.005) in patients with NAFLD cirrhosis.

D-limonene (AUROC = 0.91) is found to provide the most discriminatory power for NAFLD cirrhosis from healthy. Breath acetone level can distinguish between NAFLD non-cirrhotic & NAFLD cirrhotic; AUROC = 0.88

CONCLUSIONS

Breath VOCs have a promising future as biomarkers for a non-invasive diagnostic and prognostic tool in the management of NAFLD. D-limonene and acetone can identify NAFLD non-cirrhosis from NAFLD cirrhosis with confidence. Future validation of our finding to external cohort is needed.

REFERENCE

CONTACT INFORMATION
Rohit Sinha rohit.sinha@nhs.net