Centre for Discovery Brain Sciences
Centre for Discovery Brain Sciences Transparent Logo

Dr Nathalie Rochefort

Our research focuses on understanding how brain neuronal networks process visual information and how experience durably modifies the activity of these networks.

Dr Nathalie Rochefort

Sir Henry Dale Fellow, Chancellor's Fellow

  • Hugh Robson Building
  • 15 George Square
  • Edinburgh, EH8 9XD

Contact details

Personal Profile

  • 2014 - present: Sir Henry Dale fellow, funded by the Wellcome Trust and the Royal Society
  • 2013 - present: Chancellor’s fellow, University of Edinburgh, UK.
  • 2007 - 2012: Post-doctoral research fellow, Institute of Neuroscience, Technical University Munich, Germany
  • 2002 - 2007: Ph.D., Laboratory of Neurophysiology, Ruhr-Universität, Bochum, Germany and Laboratory of Physiologie de la Perception et de l’Action, CNRS/Collège-de-France, Paris, France
  • 2002: Master in Neuroscience, University Paris VI
  • 2000: Master in Epistemology, University Paris VII
  • 2000: BS Biology-Biochemistry, University Paris VI, Ecole Normale Supérieure, Paris

Research Theme

Synapses, Circuits and Behaviour

Research

Our aim is to reveal how neuronal networks integrate sensory information in a way that is relevant for the animal’s behaviour. We are using the mouse primary visual cortex as a model system of cortical integration of sensory and non-sensory information. Neurons in the primary visual cortex respond to specific features of visual stimuli such as their location, their orientation and their direction of movement. These visual responses do not only depend on the characteristics of the stimuli but are also strongly modulated by the context in which they are perceived, such as the animal’s behavioural state and its previous experience associated with these stimuli.

By using two-photon calcium imaging combined with electrophysiological recordings in awake behaving mice, our current projects investigate:

-          How visually-guided behaviour modulates neuronal activity in the primary visual cortex

-          How individual pyramidal neurons integrate feed-forward visual inputs with top-down contextual inputs.

-          How cortical information processing relates to energy consumption

Using such information, we apply the same combination of methods to study how this network activity is disrupted in the brain of mouse models for autistic spectrum disorders and intellectual disabilities.

Funding 

Awards

2017: The Physiological Society’s 2017 R Jean Banister Prize Lecture

2013: Schilling Research Award of the German Neuroscience Society 2013

2011: Bernard Katz Lecture Award, Alexander von Humboldt Foundation

2006: Research prize from the French national association for the blind and visually-disabled people (FAF)

Team members

Lab alumni

  • Dr Janelle Pakan (Marie Curie Fellow), PI, DZNE Magdeburg.
  • Dr Sander Keemink (Postdoctoral fellow), Champalimaud Centre for the Unknown, Portugal
  • Dr Tristan Altwegg-Boussac (Postdoctoral fellow)
  • Dr Stephen Currie (Postdoctoral fellow), University of Edinburgh.
  • Dr Christopher Coutts, Medical career, Ireland
  • Dr Lukas Fischer (Postdoctoral fellow), MIT, USA
  • Dr Evelyn Dylda (Postdoctoral fellow)

  • Dr Scott Lowe (Postdoctoral Fellow), Dalhousie University and Vector Institute)

Collaborations

Publications

* Equal contribution

Francioni V.,  Rochefort N.L., High and asymmetric somato-dendritic coupling of V1 layer 5 neurons independent of behavioural state and visual stimulation, bioRxiv, doi: https://doi.org/10.1101/664177, 2019.

Sergey Turtaev, Ivo T. Leite, Tristan Altwegg-Boussac, Janelle M. P. Pakan, Nathalie L. Rochefort * & Tomáš Čižmár *, High-fidelity multimode fibre-based endoscopy for deep brain in vivo imaging, Light: Science & Applicationsvolume 7, Article number: 92 (2018)

Dylda, E.*, Pakan, J.M.P.* and Rochefort, N.L. Chronic Two-Photon Calcium Imaging in the Visual Cortex of Awake Behaving Mice (Book Chapter), Handbook of Behavioral Neuroscience, Volume 28, 1 January 2019, Pages 235-251, Edited by D. Manahan-Vaughan, Elsevier.

Pakan J.M.P.*, Currie S.P.*, Fischer L.*, Rochefort N.L.The Impact of Visual Cues, Reward, and Motor Feedback on the Representation of Behaviorally Relevant Spatial Locations in Primary Visual Cortex.  Cell Rep. 2018 Sep 4;24(10):2521-2528. doi: 10.1016/j.celrep.2018.08.010.

Lim L, Pakan JMP, Selten MM, Marques-Smith A, Llorca A, Bae SE, Rochefort NL, Marín O. Optimization of interneuron function by direct coupling of cell migration and axonal targeting. Nat Neurosci. 2018 Jul;21(7):920-931. doi: 10.1038/s41593-018-0162-9. 

Pakan J.M.P., Francioni V., Rochefort N.LAction and learning shape the activity of neuronal circuits in the visual cortex.  Curr Opin Neurobiol. 2018 Oct;52:88-97. doi: 10.1016/j.conb.2018.04.020. Epub 2018 May 1. Review.

Keemink, S.W.*, Lowe, S.C.*, Pakan, J.M.P., Dylda, E., van Rossum, M.C.W., Rochefort, N.L., 2018. FISSA: A neuropil decontamination toolbox for calcium imaging signals. Sci. Rep. 8, 3493. doi:10.1038/s41598-018-21640-2

Pakan, J.M.P., Lowe, S.C., Dylda, E., Keemink, S.W., Currie, S.P., Coutts, C.A., Rochefort, N.L., 2016. Behavioral-state modulation of inhibition is context-dependent and cell type specific in mouse visual cortex. Elife 5, e14985. doi:10.7554/eLife.14985

Chen, X., Rochefort, N.L., Sakmann, B., Konnerth, A., 2013. Reactivation of the Same Synapses during Spontaneous Up States and Sensory Stimuli. Cell Rep. 4, 31–39. doi:10.1016/j.celrep.2013.05.042

Chen, X., Leischner, U., Varga, Z., Jia, H., Deca, D., Rochefort, N.L., Konnerth, A., 2012. LOTOS-based two-photon calcium imaging of dendritic spines in vivo. Nat. Protoc. 7, 1818–1829. doi:10.1038/nprot.2012.106

Rochefort, N.L., Konnerth, A., 2012. Dendritic spines: from structure to in vivo function. EMBO Rep. 13, 699–708. doi:10.1038/embor.2012.102

Grienberger, C.*, Rochefort, N.L.*, Adelsberger, H., Henning, H. a, Hill, D.N., Reichwald, J., Staufenbiel, M., Konnerth, A., 2012. Staged decline of neuronal function in vivo in an animal model of Alzheimer’s disease. Nat. Commun. 3, 774. doi:10.1038/ncomms1783

Rochefort, N.L.*, Narushima, M.*, Grienberger, C., Marandi, N., Hill, D.N., Konnerth, A., 2011. Development of Direction Selectivity in Mouse Cortical Neurons. Neuron 71, 425–432. doi:10.1016/j.neuron.2011.06.013

Chen, X.*, Leischner, U.*, Rochefort, N.L., Nelken, I., Konnerth, A., 2011. Functional mapping of single spines in cortical neurons in vivo. Nature 475, 501–505. doi:10.1038/nature10193

Jia, H.*, Rochefort, N.L.*, Chen, X., Konnerth, A., 2011. In vivo two-photon imaging of sensory-evoked dendritic calcium signals in cortical neurons. Nat. Protoc. 6, 28–35. doi:10.1038/nprot.2010.169

Rochefort, N., 2010. Organisation dendritique et caractéristiques fonctionnelles des afférences visuelles sur les neurones corticaux. médecine/sciences 26, 1009–1012. doi:10.1051/medsci/201026121009

Jia, H.*, Rochefort, N.L.*, Chen, X., Konnerth, A., 2010. Dendritic organization of sensory input to cortical neurons in vivo. Nature 464, 1307–1312. doi:10.1038/nature08947

Rochefort N.L., Grienberger C. and Konnerth A., 2010. In vivo two-photon calcium imaging using multicell bolus loading of fluorescent indicators, Imaging in Neuroscience: A Laboratory Manual, R. Yuste, F. Helmchen and A. Konnerth, editors, Cold Spring Harbor Laboratory Press, NY, chapter 9.

Rochefort, N.L.*, Garaschuk, O.*, Milos, R.-I.*, Narushima, M., Marandi, N., Pichler, B., Kovalchuk, Y., Konnerth, A., 2009. Sparsification of neuronal activity in the visual cortex at eye-opening. Proc. Natl. Acad. Sci. 106, 15049–15054. doi:10.1073/pnas.0907660106

Rochefort, N.L., Buzás, P., Quenech’du, N., Koza, A., Eysel, U.T., Milleret, C., Kisvárday, Z.F., 2009. Functional Selectivity of Interhemispheric Connections in Cat Visual Cortex. Cereb. Cortex 19, 2451–2465. doi:10.1093/cercor/bhp001

Rochefort, N.L., Jia, H., Konnerth, A., 2008. Calcium imaging in the living brain: prospects for molecular medicine. Trends Mol. Med. 14, 389–399. doi:10.1016/j.molmed.2008.07.005

Rochefort, N.L., Konnerth, A., 2008. Genetically encoded Ca2+ sensors come of age. Nat. Methods 5, 761–762. doi:10.1038/nmeth0908-761

Rochefort, N.L., Buzás, P., Kisvárday, Z.F., Eysel, U.T., Milleret, C., 2007. Layout of transcallosal activity in cat visual cortex revealed by optical imaging. Neuroimage 36, 804–821. doi:10.1016/j.neuroimage.2007.03.006

Rochefort, N., Quenech’du, N., Ezan, P., Giaume, C., Milleret, C., 2005. Postnatal development of GFAP, connexin43 and connexin30 in cat visual cortex. Dev. Brain Res. 160, 252–264. doi:10.1016/j.devbrainres.2005.09.011

Rochefort, N., Quenech’du, N., Watroba, L., Mallat, M., Giaume, C., Milleret, C., 2002. Microglia and astrocytes may participate in the shaping of visual callosal projections during postnatal development. J. Physiol. Paris 96, 183–92.