Row Fogo Centre for Research into Ageing and the Brain
Row Fogo Centre for Research into Ageing and the Brain Logo

Menu

New publication: "Aging-Sensitive Networks Within the Human Structural Connectome Are Implicated in Late-Life Cognitive Declines"

Publication journal: Biological Psychiatry - A Journal of Psychiatric Neuroscience and Therapeutics

Authors: James W. Madole, Stuart J. Ritchie, Simon R. Cox, Colin R. Buchanan, Maria Valdés Hernández, Susana Muñoz Maniega, Joanna M. Wardlaw, Mathew A. Harris, Mark E. Bastin, Ian J. Deary, and Elliot M. Tucker-Drob

Publication year: 2021

 

Abstract

Background

Aging-related cognitive decline is a primary risk factor for Alzheimer’s disease and related dementias. More precise identification of the neurobiological bases of cognitive decline in aging populations may provide critical insights into the precursors of late-life dementias.

Methods

Using structural and diffusion brain magnetic resonance imaging data from the UK Biobank (n = 8185; age range, 45–78 years), we examined aging of regional gray matter volumes (nodes) and white matter structural connectivity (edges) within 9 well-characterized networks of interest in the human brain connectome. In the independent Lothian Birth Cohort 1936 (n = 534; all 73 years of age), we tested whether aging-sensitive connectome elements are enriched for key domains of cognitive function before and after controlling for early-life cognitive ability.

Results

In the UK Biobank, age differences in individual connectome elements corresponded closely with principal component loadings reflecting connectome-wide integrity (|rnodes| = .420; |redges| = .583), suggesting that connectome aging occurs on broad dimensions of variation in brain architecture. In the Lothian Birth Cohort 1936, composite indices of node integrity were predictive of all domains of cognitive function, whereas composite indices of edge integrity were associated specifically with processing speed. Elements within the central executive network were disproportionately predictive of late-life cognitive function relative to the network’s small size. Associations with processing speed and visuospatial ability remained after controlling for childhood cognitive ability.

Conclusions

These results implicate global dimensions of variation in the human structural connectome in aging-related cognitive decline. The central executive network may demarcate a constellation of elements that are centrally important to age-related cognitive impairments.

 

Keywords:

 

Publication link

Publication link (external website)

Related links

Row Fogo Centre - Publications