Centre for Reproductive Health

Gentek group

How does the immune system develop in the embryo? What are the functions of embryonic immune cells? Does maternal adversity perturb immune development, and does this affect health in later life?

Dr Rebecca Gentek

Chancellor's Fellow & Kennedy Trust Senior Research Fellow

  • Centre for Reproductive Health

Contact details

Group Members

  • Solvig Becker – Research Assistant
  • Cyril Carvalho - Postdoctoral Research Fellow
  • Shin Li Chia - PhD student
  • Simran Kapoor - PhD student (co-supervised with Amy Pedersen)
  • Marlene Magalhaes - Postdoctoral Research Fellow
  • Bert Malengier-Devlies - Postdoctoral Research Fellow
  • Clara Munz - Postdoctoral Research Fellow
  • Guillaume Seuzaret – Research Assistant

Background

Ontogeny of the immune system

Blood cells develop in a complex sequence of events that involve different sites and time points. The first mature blood cells arise from progenitors generated early in embryogenesis. In most cases, these cells are gradually replaced through progenitors produced from other sources at later stages of embryonic development. Certain types of blood cells thus have different origins throughout life. They form what has been called a "layered" immune system. This has long been known for erythrocytes and megakaryocytes, and more recently found great appreciation for macrophages. It now appears to be more widely true, however, as it also applies to eg mast cells and innate lymphoid cells. The extent of this replacement varies between cell types and tissues. For example, many tissues retain a sizeable population of embryonic macrophages into adulthood. Other lineages, such as innate-like B1 and some gd T cells, are exclusively of embryonic origin, but can be replaced by or layered with similar cell types under specific conditions. Yet other lineages are constantly replenished in the adult from haematopoietic stem cells in the bone marrow, but these stem cells are themselves generated in the embryo.

While our understanding of immune development is improving, some exciting questions have remained largely unanswered: Do different layers of immune cells exert discrete, non-overlapping functions? Are layered cells and progenitors persisting into adulthood susceptible to environmental insults experienced in utero? How does this affect health in later life?

Developmental origins of adult disease: Programming of the immune system?

Indeed, it is now firmly established that the likelihood of developing chronic, non-communicable disease in adulthood is strongly influenced by environmental factors in early life, including the foetal period. This phenomenon, coined "programming", has been observed for maternal malnutrition and offspring cardiovascular and metabolic disease, but also other adversities and pathologies that involve the immune system, such as rheumatoid arthritis. Programming of the developing layered immune system might be the underlying cause.

Research Overview

Our research is centred on immune ontogeny: We study the development and functions of "layered" immune cells such as macrophages, mast cells and innate lymphocytes. We are particularly interested in the interplay between the intrauterine environment, immune development and health and disease in later life. Generous funding from the Kennedy Trust for Rheumatology Research enables us to explore the concept that the developing immune system is pathologically programmed in the context of rheumatoid arthritis.

We primarily use in vivo models that allow genetic fate mapping and conditional targeting of immune cells, as well as models mimicking maternal adversity and (rheumatoid) disease. These are interrogated with state-of-the-art readouts (eg single cell genomics, high-dimensional flow cytometry), and complemented with studies of human tissues.

The following PDF provides a brief visual summary of this group’s current research.

You can view a full catalogue of graphical research summaries for each group in the Centre for Inflammation Research by visiting our Research page.

Visit CIR’s Research page

Biographical Profile

During my undergraduate studies in Biology (Bochum, Germany), I developed a strong interest in cellular signalling pathways. This led me to join the group of Derk Amsen in Amsterdam (The Netherlands) as a PhD student, where I ventured into immunology and studied the differentiation of T cells and innate lymphocytes (ILC). To further pursue my budding passion for immune development, I moved to the CIML in Marseille (France) for my postdoc. My work with Michael Sieweke contributed to the recognition that embryonic macrophages can persist into adulthood and receive only low input from bone marrow progenitors. Working with Marc Bajenoff, I subsequently demonstrated that unlike previously thought, very similar developmental kinetics also apply to mast cells, whereas epidermal gd T cells are generated independently from adult-type progenitors altogether. Building on this work and the strong expertise on inflammatory disease, haematopoiesis and reproductive health concentrated in Edinburgh, I decided to start my own lab here. I joined CIR as a Chancellor's Fellow and obtained a Senior Research Fellowship from the Kennedy Trust shortly after.

Derk Amsen

Centre d'Immunologie de Marseille-Luminy

Michael Sieweke

Marc Bajenoff

Mental Health First Aider (as of February 2020)

Alumni

  • Anna Ahlback - Research Assistant (2021-2023)
  • Tabea Gehnen – Summer student (2023)
  • Evelyne Hellinck – Visiting Masters student (2020-2021)
  • Julia Karjalainen – Honours and visiting student (2022-2023)
  • Jimmy Marsden – Master student (2021-2022)
  • Rachel Morley – Honours student (2022)
  • Stefania Ottelli Zoletti – Masters student (2022-2023)
  • Katelyn Patatsos - Research Assistant (2020-2023)
  • Harry Potter - Postdoctoral Research Fellow (2021)
  • Carolin Radwaniak – Masters student (2022-2023)
  • Olivia Shorthouse – Master student (2021-2022)

Collaborators

University of Edinburgh

External

Sources of Funding

More information on funding at Rebecca Gentek's Research Explorer profile.